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a b s t r a c t

The micromechanical behavior of an assembly of binary and polydisperse spherical pebbles is stud-
ied using discrete element method (DEM) accounting for microscopic interactions between individual
pebbles. A in-house DEM code has been used to simulate the assemblies consisting of different pebble
diameters and the results of the simulations are compared with that of mono-size pebble assemblies. The
effect of relative radii and volume fraction of the pebbles on the macroscopic stress–strain response is
discussed. Furthermore, the effect of packing factor and coefficient of friction on the overall stress–strain
behavior of the system is studied in detail. The shear (tangential) stiffness between the particles is also
another influencing parameter. For a very small shear stiffness the system shows a strong dependence on
the packing factor while a pebble material dependent shear stiffness shows a rather moderate dependence
on the packing factor. For a similar packing factor, the mono-size assembly shows a stiff behavior during
loading compared to binary assembly. However, the simulations do not show a significant difference
between the two behaviors in contrast to the observations made in the experiments. The discrepancy
can be attributed to (i) probable difference in packing factors for mono-size and binary assemblies in

the experiments, (ii) arbitrary friction coefficient in the current model and (iii) the tangential interac-
tion (constant shear stiffness) implemented in the present model which needs further modification as
a function of the load history on the pebbles. Evolution of other micromechanical characteristics such
as coordination number, contact force distribution and stored elastic energy of individual pebbles as a
function of external load and system parameters is presented which can be used to estimate important
macroscopic properties such as overall thermal conductivity and crushing resistance of the pebble beds.
. Introduction

Tritium breeding and neutron multiplication are two primary
oals for a sustained fusion fuel cycle in fusion reactors. These two
oals are achieved by breeding blankets either in liquid or solid
orm. Solid breeding blankets comprise of ceramic breeder material
uch as lithium-ortho-silicate (OSi) or lithium-meta-titanate (MTi)
nd beryllium (Be) as neutron multipliers both in the form of pebble
eds. Knowledge of the structural integrity as well as the thermo-
echanical behavior of these pebble beds is extremely important to

uarantee a sustained fuel cycle [1]. The thermo-mechanical behav-
or of the pebble beds can be studied under two different length
cales based on continuum and discrete particle methods. The for-
er method employs a phenomenological constitutive behavior [2]
o obtain a macroscopic response of the system while the later
pproach is aimed at investigating the micro-mechanical inter-
ctions between the individual pebbles so as to establish a link
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with the macroscopic thermo-mechanical response of the pebble
beds. The discrete element method (DEM) has been used to study
the micro-mechanical behavior of granular assemblies [3] in many
fields of engineering. The application of DEM to thermo-mechanical
behavior of pebble assemblies has been carried out in the past [4,5].
However, in these studies a uniform pebble size has been con-
sidered. But, the produced pebbles are known to have a diameter
distribution in the range of 0.25–0.65 mm [6]. Hence, it is important
to study the influence of size distribution on the overall thermo-
mechanical response of the pebble assembly. To accomplish this
task, we first study a binary assembly with different radius and
relative volume fractions. Later, a polydisperse pebble assembly is
generated conforming to the experimental pebble size distribution.
The effect of packing factor, pebble size distribution and the fric-
tion between the pebbles on the macroscopic and the microscopic
behavior will be investigated.

The outline of the article is as follows. In Section 2, the model
and the simulation procedure will be presented. In Section 3.1,

pebble assemblies with binary distribution will be studied and in
Section 3.2 the results concerning the polydisperse pebble assem-
blies will be presented. Finally, we conclude the article in Section
4.
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tors the dashed and dotted lines shows almost the same behavior
nullifying the effect of packing factor. This suggests that the counter
intuitive behavior of the assemblies studied above should be arising
from the difference in the values of relative volume fraction V*. The
54 R.K. Annabattula et al. / Fusion Eng

. Model and simulation procedure

We consider an assembly of 5000 pebbles in a periodic box
f size L × L × L as the representative volume element (RVE) for
he pebble beds of much larger size. Then we apply macroscopic
ni-axial strain of 1.5% on the periodic box and then unload the
ystem to a stress-free state. The pebbles are assumed to be spher-
cal in shape in agreement with the experiments conducted on
i4SiO4 pebbles [7]. The elastic modulus (E) of the OSi pebble is
aken as 90 GPa and the Poisson’s ratio (�) is equal to 0.25. The
ebble–pebble interaction is assumed to be elastic with normal
nd tangential interactions. The normal contact force is calculated
ased on the Hertzian contact law and the tangential contact force

s taken as the minimum of the friction force and shear force cal-
ulated from the shear stiffness which is dependent on the elastic
roperties of the contacting pebbles [7]. The coefficient of friction
�) between the pebbles is assumed to be equal to 0.1.

The macroscopic response of a granular assembly is character-
zed by the average stress of the assembly defined as [8]

ij = 1
V

(∑
I<J

ı(I,J)f (I,J)
N ninj +

∑
I<J

ı(I,J)f (I,J)
T nitj

)
, (1)

here ı(I,J) is the distance between the centers of pebble I and J, f (I,J)
N

nd f (I,J)
T are the normal and shear contact forces, respectively, on

ebble I exerted by pebble J, ni and ti denote unit vectors for direc-
ions of the normal and tangential forces, respectively. The packing
actor (�) and an average pebble radius 〈r〉 for a polydisperse assem-
ly can be written as

= 4�

3V

P∑
p=1

Npr3
p ; 〈r〉 = 3

√√√√ P∑
p=1

Np

N
r3
p , (2)

here Np is the number of pebbles with a radius rp in a polydisperse
ssembly with P different pebble sizes. We have

= 4�〈r〉3N

3V
. (3)

he average normal contact force in the assembly can be written as

ave = 2

∑
I<J f

(I,J)
N

ncN
, (4)

here, nc denotes the coordination number. The hydrostatic pres-
ure in the assembly is defined as �ii/3 given by

= �ii

3
= 1

3V

(∑
I<J

ı(I,J)f (I,J)
N

)
, (5)

btained by substituting nini = 1 and niti = 0 in Eq. (1). Now, com-
ining Eqs. (3) and (4) and substituting in Eq. (5), we get

= nc�

8�〈r〉3
fave ı∗; ı∗ =

∑
I<Jı

(I,J)f (I,J)
N∑

I<J f
(I,J)
N

. (6)

he term ı* in the above expression is the length scale of the size
istribution which distinguishes a mono size assembly from a poly-
isperse (or binary) assembly. For a mono-size assembly, 〈r〉3 = r3

nd ı(I,J) � 2r, so that the hydrostatic pressure p = nc�fave/(4�r2).

. Results
In this section, we present the results of the DEM simulations
arried out for binary and polydisperse pebble assemblies. We
tudy the effect of various parameters such as packing factor (�),
ng and Design 87 (2012) 853–858

coefficient of friction (�) between the pebbles and pebble size dis-
tribution on the macroscopic average stress–strain response of the
pebble assembly as well as on the interaction between the micro-
scopic and macroscopic properties.

3.1. Binary pebble assembly

The binary pebble assemblies studied in this paper are charac-
terized by two parameters: radius ratio (r*) and relative volume
fraction (V*) defined as

r∗ = rs

rg
; V∗ = Vg

Vs + Vg
, (7)

where rg and rs are the radius of large and small pebble, respec-
tively. Vg and Vs are the volumes occupied by the total number of
large (Ng) and small pebbles (Ns), respectively given by

Vg = Ng
4
3

�r3
g ; Vs = Ns

4
3

�r3
s . (8)

Fig. 1(a) shows the average stress–strain response in the load-
ing direction (see z in Fig. 2 or indicated by stress/strain component
“33”) of a binary assembly characterized by r* = 0.6 and V* = 0.7
with different packing factors. The pebble assembly is uni-axially
compressed up to 1.5% strain and then unloaded to a stress-
free configuration. The assembly exhibits a stiffer response with
increase in packing factor. For the case of � = 0.660 (solid line) and
0.651 (dashed line), unloading the assembly does not show a sig-
nificant residual strain while for the assembly with a loose packing
(� = 0.643, dotted line), the unloading curve shows a residual strain
(≈0.35%). This suggests that the reversibility of the system depends
on the initial packing factor of the assembly. For an assembly with
large packing factor, the individual pebbles have less freedom to
move/rearrange during loading. For the loosely packed assemblies,
the pebbles undergo considerable rearrangement during loading
and hence the unloading of the system results in a new stress-
free configuration different from the initial configuration leaving
a net residual strain. This irreversible strain may result in a gap for-
mation inside the blanket during thermo-mechanical cycles under
operational conditions.

Fig. 1(b) shows the stress–strain response for a binary assem-
bly with r* = 0.6 for three different relative volume fractions V*: 0.2
(solid line), 0.4 (dashed line) and 0.7 (dotted line). Clearly, for the
assembly with large relative volume fraction (dotted line corre-
sponding to V* = 0.7), the response is soft compared to the assembly
with lower V* values (solid (0.2) and dashed (0.4) curves). A consid-
erable difference in macroscopic response has not been observed
for the dashed and dotted curves despite the difference in rela-
tive volume fractions. Note that the packing factor associated with
each assembly analyzed above is different.1 It is known that the
stress–strain response is very sensitive to packing factor [5] and
hence its effect is also expected to be present in the results. For
instance, assume that the effect of relative volume fraction V* is neg-
ligible. Then, the assembly with a high packing factor should show a
stiffer response (conform Fig. 1(a)). Hence in the above Fig. 1(b), the
assembly with � = 0.651 (dotted line) should show stiffer response
compared with other two assemblies. But the system shows an
opposite behavior. Similarly, despite the difference in packing fac-
1 It should be noted that the assemblies in this study are generated using a ran-
dom close packing algorithm [9] and hence it is not possible to generate two binary
assemblies of different r* and V* values with exactly the same packing factor.
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Fig. 1. Average stress–strain response of binary pebble assemblies for different packing factors (a), relative volume fractions (b), radius ratios (c) and coefficients of friction
(d).

Fig. 2. Configurations of binary pebble assemblies with r* = 0.6 for different relative volume fractions V*: 0.7 (first column), 0.4 (second column) and 0.2 (third column) at the
end of loading to 1.5% strain. Color of the each pebble corresponds to the potential energy of the pebble � normalized with the maximum potential energy �max attained by
a pebble in the assembly at 1.5% strain.
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resence of small pebbles between two large pebbles introduces
ball-bearing like effect also observed in experiments [10] result-

ng in a softer response. A large value of V* indicates the presence
f more such ball-bearing like sites in the assembly resulting in a
omplaint behavior of the assembly.

Fig. 1(c) shows the stress–strain response for binary assemblies
ith different radius ratios (r*) but with same relative volume frac-

ion (V*), friction coefficient (�) and approximately same packing
actor. Clearly, the stress–strain response approaches that of the

ono-size (solid line) assembly as the radii of the two pebbles
pproach the same value (i.e., r* → 1). With the reduction in r*

alue, the response becomes more complaint. This can be again
eferred back to the ball-bearing like behavior of small pebbles
etween large pebbles. A smaller value of r* grants more freedom
or small pebbles to move between the large particles thus result-
ng in a complaint behavior. Furthermore, the residual strain after
nloading increases with decrease in r* due to large irreversibil-

ty introduced during loading through the free movement of small
ebbles.

Fig. 1(d) shows the effect of friction coefficient (�) on the
tress–strain response of the pebble assembly with r* = 0.6, V* = 0.7
nd � = 0.660. With increase in friction coefficient, the pebbles will
ave less freedom to move and hence the rearrangement during

oading becomes difficult leading to a stiff behavior and conse-
uently the assembly exhibits a very small residual strain after
nloading. A small value of coefficient of friction (�) allows the
ebbles to move and rearrange rigorously within the assembly
hus exhibiting a complaint behavior together with a large residual
train after unloading to a stress-free state as shown in the figure.

Fig. 2 shows the potential energy (at the end of loading to
.5% strain) in the pebbles for three binary assemblies with dif-
erent relative volume fractions: 0.7 (Fig. 2(a)), 0.4 (Fig. 2(b)) and
.2 (Fig. 2(c)). The colors of the pebbles represent the potential
nergy (�) of the pebble normalized with the maximum potential
nergy (�max) attained by a pebble in the assembly. The pack-
ng factors of the three assemblies are slightly different from each
ther. However, it was mentioned before (see Fig. 1(b) and the cor-
esponding discussion) that the effect of packing factor is much
ess pronounced (in the range of values considered here) com-
ared to the effect of relative volume fraction V* varying between
.2 and 0.7. It can be clearly seen that the total potential energy
f the assembly is mainly contributed by the larger pebbles while
he contribution of small pebbles is relatively small. At the bot-
om of each column, the total potential energy of the assembly

(in J) and the maximum value of the potential energy (�max)
mongst all the pebbles at �33 = 1.5% are mentioned. Clearly, the
alues of � and �max decrease with decrease in V* showing an
pposing trend to the stress-state of the assembly as a function of
*. But, when the total energy is normalized with E〈r〉3, the nor-
alized total potential energy of the assembly shows a correlation
ith the stress–strain response. This suggests that the interpre-

ation of energy results should be made based on the normalized
otal potential energy rather than the total potential energy of the
ssembly.

Fig. 3(a) shows the normalized average normal force plotted
gainst the hydrostatic pressure in a pebble assembly for different
* values. The average normal force fave is normalized with E < r > 2,
here <r> is an average pebble radius for the binary assembly (see

q. (2)). Similar to the mono-size pebble assembly [5], the binary
ssembly also shows a unique linear dependence of the normalized
verage normal force with the hydrostatic pressure, independent of
he relative volume fraction. Indeed, the linear relation also holds

ood for different values of r* and packing factors resulting in a
aster curve shown in Fig. 3(a). In addition to the striking linear

ependence of the normalized normal contact force on the hydro-
tatic pressure, the master curve also provides more insight into the
ng and Design 87 (2012) 853–858

average stress–strain behavior of the assemblies studied in Fig. 1.
For instance, the stress state in the assembly is directly connected
to the state of hydrostatic pressure of the assembly. Fig. 3(a) shows
that the assembly with large value of V* has small hydrostatic pres-
sure which explains the soft response of the assembly with large
V* (circles) despite a large packing factor than the assembly with
small V* (squares). The average coordination number nc of a pebble
assembly is defined as the ratio of the total number of contacts to
the total number of pebbles in the assembly. Fig. 3(b) shows the
effect of V* on the coordination number. The coordination num-
ber at a given hydrostatic pressure decreases with increase in V*

value in confirmation with the soft behavior of the assembly with
increase in V* value (conform Fig. 1(b)). For an assembly with a
given r* and V* values, the coordination number increases with
increase in packing factor for a given hydrostatic pressure (results
not shown). Also, for a given V*, � values and at a given hydrostatic
pressure, the coordination number nc increases with increase in
r* value (results not shown). Clearly, the coordination number is a
function of r* and V* values in addition to hydrostatic pressure in
contrast to the mono-size assemblies [5].

3.2. Polydisperse pebble assembly

In this section, we analyze the polydisperse pebble assem-
blies with a size (diameter) distribution between 0.25 mm and
0.65 mm as shown in Fig. 4(a). Packing of the pebble beds with
such a size distribution is not a common practice in the present
pebble bed designs. However, analyzing systems with a generic
pebble size distribution is interesting to understand the microme-
chanical features for future pebble bed designs. We analyzed the
average stress–strain response of the 4 batches of the polydisperse
assemblies with the similar size distribution with a small variation
measured in the fusion materials laboratory at the Karlsruhe Insti-
tute of Technology (KIT). The assemblies for DEM simulations have
been generated using a modified RCP algorithm [9]. The effect of
packing factor on the average stress–strain response is similar to
the case of mono size and binary assemblies. The residual strain
after unloading increases with decrease in packing factor akin to
the observation made in binary assemblies due to ensuing irre-
versibility in the system.

Fig. 4(b) shows the average stress–strain response of a mono-
size, binary and polydisperse assemblies. Despite having the lowest
packing factor amongst the group, the mono size assembly shows a
stiff behavior with negligible residual strain after unloading. On the
contrary, the binary and polydisperse assemblies exhibit a rather
soft behavior (in comparison to mono size assembly) along with a
residual strain of approximately 0.3%. In the uni-axial compression
tests carried out by [10], the assembly shows a rather soft behav-
ior with a residual strain of approximately 0.35%. However, in the
present study of polydisperse pebble assemblies, a much stiffer
response during loading is observed. In the present analysis, we
have assumed an arbitrary friction coefficient (� = 0.1) and it has
been shown in Fig. 1(d) that it can have profound influence on the
stress–strain response of the assembly. Hence, a one-to-one corre-
spondence between the experiments and simulations can be made
better with a reasonable estimate of the friction coefficient.

The master curve of scaled average normal force of binary
assembly (Fig. 3(a)) may be also extended to the polydisperse
assemblies since they are only distinguished by the window of
size distribution. Fig. 5(a) shows the scaled average normal force
as a function of hydrostatic pressure for binary and polydisperse
assemblies for different combinations of size distribution amalyzed

in this paper. Clearly, a unique linear dependence is observed with
a very small scatter. It should be noted that the unscaled average
normal force plotted against hydrostatic pressure for all the assem-
blies does not result in a master line as shown above. The small
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Fig. 3. Normalized average normal contact force (a) and average coordination number nc (b) plotted against hydrostatic pressure for assemblies with r* = 0.6 and approximately
same packing factor for different V* values. The average normal force of the assembly fave is normalized with E〈r〉2, where 〈r〉 is the average pebble radius of the pebble assembly.
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catter about master curve for some data points may be related
o the length scale of size distribution (ı*). Similarly, the scaled
verage coordination number ncp* shows a unique linear depen-
ence with the hydrostatic pressure resulting in another master
urve in Fig. 5(b). These master curves can be used to describe the
icro-mechanical properties of a polydisperse assembly irrespec-

ive of the pebble size distribution and packing factor. Furthermore,
hese master curves show a unique relation between the micro-
copic properties (such as average normal force and average
oordination number) and macroscopic properties (such as hydro-
tatic pressure) allowing them to be used as design tools for pebble
eds.

. Summary and conclusions

In summary, we have presented a numerical model based on
EM to study the micromechanics of binary and polydisperse peb-
le assemblies. The analysis of binary pebble assemblies shows that
he average stress–strain behavior is dependent on two parame-
ers: radius ratio r* and relative volume fraction V* in addition to the
acking factor �. The small pebbles act like ball bearings between

arge pebbles resulting in an overall complaint response of the
ssembly. Increasing the difference between the pebble radii (i.e.,
ecreasing r*) or increasing the relative volume fraction of large
ebbles (i.e., increasing V*) results in complaint response of the
ssembly. For the same physical properties of the pebble material,
he mono-size assembly shows a stiffer response compared to poly-
isperse and binary assemblies. Furthermore, the residual strain
fter unloading in polydisperse assemblies matches closely with
he experimental results while the mono-size assemblies do not
how any significant residual strain after unloading. The effect of
riction between pebbles also plays an important role in the overall
tress–strain behavior. Despite the difference in pebble size distri-
ution the scaled average normal contact force and scaled average

oordination number shows a unique linear dependence on the
ydrostatic pressure resulting in two master curves. These mas-
er curves can be used to predict the micro-mechanical response
f the assemblies irrespective of the pebble size distribution and

[

ng and Design 87 (2012) 853–858

packing factor in addition to establishing a link between micro-
scopic properties and macroscopic system response.
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