
F

S
a

b

c

a

A
R
R
A
A

K
L
C
F
D

1

a
t
s
o
t
t
T
p
o
t
r

t
m
t
f
t

H
T

0
h

Fusion Engineering and Design 88 (2013) 8– 16

Contents lists available at SciVerse ScienceDirect

Fusion  Engineering  and  Design

jo ur nal homep age : www.elsev ier .com/ locate / fusengdes

ailure  initiation  and  propagation  of  Li4SiO4 pebbles  in  fusion  blankets

huo  Zhaoa,b,∗, Yixiang  Ganc, Marc  Kamlahb

College of Mechanical and Electronic Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
Institute for Applied Materials, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, NSW 2006, Australia

 r  t  i  c  l  e  i n  f  o

rticle history:
eceived 7 March 2012
eceived in revised form 4 June 2012
ccepted 17 September 2012
vailable online 22 October 2012

eywords:
i4SiO4 pebbles
ritical energy

a  b  s  t  r  a  c  t

Lithium  orthosilicate  (Li4SiO4)  pebbles  are considered  to  be  a candidate  as  solid  tritium  breeder  in  the
helium  cooled  pebble  bed  (HCPB)  blanket.  These  ceramic  pebbles  might  be crushed  during  thermome-
chanical  loading  in  the  blanket.  In  this  work,  the failure  initiation  and  propagation  of  pebbles  in  pebble
beds  is  investigated  using  the  discrete  element  method  (DEM).  Pebbles  are  simplified  as  mono-sized  elas-
tic spheres.  Every  pebble  has  a contact  strength  in  terms  of  critical  strain  energy,  which  is  derived  from  a
validated  strength  model  and  crush  test  data  for pebbles  from  a specific  batch  of  Li4SiO4 pebbles.  Pebble
beds  are  compressed  uniaxially  and  triaxially  in  DEM  simulations.  When  the  strain  energy  absorbed  by
a  pebble  exceeds  its  critical  energy  it fails.  The  failure  initiation  is  defined  as  a  given  small  fraction  of
ailure
EM simulation

pebbles  crushed.  It is found  that the  load  level  for  failure  initiation  can  be  very  low.  For  example,  if failure
initiation  is  defined  as  soon  as 0.02%  of  the  pebbles  have  been  crushed,  the  pressure  required  for  uniaxial
loading  is  about  2.5 MPa.  Therefore,  it is  essential  to  study  the  influence  of  failure  propagation  on  the
macroscopic  response  of  pebble  beds.  Thus  a  reduction  ratio  defined  as  the  size  ratio  of  a pebble  before
and  after  its  failure  is  introduced.  The  macroscopic  stress–strain  relation  is  investigated  with  different

l  stre
reduction  ratios.  A  typica

. Introduction

Pebble beds are integral parts of fusion reactors as solid breeder
nd neutron multiplier in the HCPB blanket [1,2]. The blanket con-
ains two types of pebbles, ceramic breeder (lithium compound,
uch as Li4SiO4) and neutron multiplier (beryllium). During the
peration of fusion reactors, pebbles will expand because of high
emperatures in addition to thermal stresses introduced by the
hermal mismatch between the pebble beds and container wall.
his may  lead to the failure of ceramic pebbles. It is foreseen that
ebble failure will affect the overall thermomechanical response
f pebble beds [3].  Therefore, the knowledge of pebble failure ini-
iation and propagation in pebble beds is necessary for a safe and
eliable design of the HCPB blanket.

The discrete element method (DEM) [4] is suitable to compute
he motion of a large number of particles constituting a granular

aterial, such as a pebble bed. This method has been already used

o investigate the mechanical or thermal response of pebble beds
or non-crushable pebbles [5–9]. For example, An et al. [5] show
hat packing factor (PF) and bed geometry have an impact on the
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ss  plateau  is found  for a  small  reduction  ratio.
© 2012 Elsevier B.V. All rights reserved.

mechanical stiffness of pebble beds. The packing factor is the ratio
of the volume of all pebbles to the volume of the particle assembly,
i.e., pebble bed. The significant influence of the PF can also be seen
using periodic boundary conditions [7].  Thermomechanical prop-
erties of pebble beds, such as thermal stress or creep due to thermal
expansion or external pressure, have been investigated by DEM as
well [6,8,9].  On the other hand, particle failure can be taken into
account into the DEM method as long as the particle strength can
be quantitatively described and imported into DEM. For example,
Marketos and Bolton [10] assume that particles will fail if the maxi-
mum contact force exerted on them exceeds a critical value. In their
DEM simulations, pebbles are removed once they are crushed. In
the research activities related to fusion engineering, although there
are some papers concerning the strength of single pebbles [11–13],
no work has been reported on the influence of pebble failure on the
overall response of pebble beds.

In this work, we will include the pebble–pebble contact strength
into DEM to study pebble failure initiation and propagation. For this
purpose, we  employ the pebble strength formulated in terms of
strain energy, as it has been derived from a verified strength model
[13]. This approach relies on experimental data. We  will first focus
on the load levels for the initiation of pebble failure under differ-

ent loading conditions. For the identification of this load level, two
different methods are used. In order to simulate the propagation
of pebble failure, a reduction ratio of pebble size is introduced to
characterize the presence of crushed pebbles. We  discuss in detail

dx.doi.org/10.1016/j.fusengdes.2012.09.008
http://www.sciencedirect.com/science/journal/09203796
http://www.elsevier.com/locate/fusengdes
mailto:shuo.zhao@hebust.edu.cn
mailto:vaselago@gmail.com
dx.doi.org/10.1016/j.fusengdes.2012.09.008
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he influence of pebble failure on the overall response of pebble
eds.

This paper is organized as follows. The DEM code and pebble
ontact strength used in this work will be introduced in Section 2.
wo methods identifying the load level for failure initiation are
hown in Section 3. The influence of pebble failure propagation on
he overall response of pebble beds will be presented in Section 4.
inally, conclusions are made in Section 5.

. Simulation methods

.1. Discrete element method

The DEM code developed at Karlsruhe Institute of Technology
KIT) will be used here [7].  The normal and tangential contact
orces are calculated from Hertz contact theory and a linear fric-
ion model, respectively. A separate code provides a random initial
onfiguration, namely the positions of the centers of the mono-
ized spherical particles, at a prescribed packing factor, such that
here is no overlapping of any particles in the assembly [7].  Periodic
oundary conditions are employed, by which only a comparably
mall number of particles in a representative volume element (RVE)
s needed to obtain statistical information on the bulk behavior
f a pebble bed. In this way, this boundary condition leads to a
imitation of the computational efforts for simulations.

In this work, a periodic assembly of 5000 spheres in a cubic box
s considered which is subject to periodic boundary conditions. The
dge length of the box is about 8 mm.  In view of Li4SiO4 pebbles for
usion breeding blanket applications, Young’s modulus and Pois-
on’s ratio of the spheres are chosen as E = 90 GPa and � = 0.25 [12],
espectively. The spheres have a size of 0.5 mm which is the mean
ize of Li4SiO4 pebbles from the batch OSi 07/1 produced for breed-
ng blanket applications [13,14].  The friction coefficient is set to

 = 0.1 unless otherwise specified. The shear stiffness in the friction
odel is 16G*/3 where G* = 55 GPa is the equivalent shear modu-

us for Li4SiO4 pebbles [13]. Uniaxial and triaxial load, respectively,
ill be applied under displacement control on the pebble beds. As
entioned before, we focus on the load level for failure initiation

nd on the macroscopic stress–strain relation along with failure
ropagation.

.2. Pebble strength

According to the strength model adopted in this work, a pebble
ails if the strain energy absorbed by it reaches a critical level. For the
ase of the Li4SiO4 pebbles considered in this work, this criterion
as been developed, verified and discussed in full detail in [13,15].
he probability density function (PDF) of the contact strength, i.e.,
ritical strain energy of pebbles, is given by

s(Wc) = m

WMat

(
Wc

WMat

)m−1
exp

(
−
(

Wc

WMat

)m
)

, (1)

here Wc is the critical strain energy, m and WMat are material
arameters. For these material parameters, the values m = 3.2 and
Mat = 8.2 × 10−6 J, have been identified for pebbles with a diam-

ter of 0.5 mm  from the mentioned batch OSi 07/1 under fusion
elevant conditions, that is, the pebbles were subjected to high tem-
erature and dry inert gas. In DEM simulations, a critical energy

s distributed randomly among pebbles according to Eq. (1).  The

ethod to assign the critical energy to each pebble will be given

ater in Section 3.2.
We recall, that a pebble will fail if the strain energy it has actually

bsorbed exceeds its individual critical energy. Assuming that there
 and Design 88 (2013) 8– 16 9

is no interaction between different contact areas of a pebble, the
strain energy for pebbles in pebble beds can be calculated by

Wa =
Nc∑
i=1

cF5/3
i

, (2)

where Nc is the coordination number, i.e., the number of contacts,
of the pebble, Fi is the contact force of ith contact(i = 1, 2, . . .,  Nc),
and c is a constant derived from Hertz theory given by

c = 1
5

(
9

16R∗ )1/3 1
E∗(2/3)

. (3)

Here, R* is the relative radius of curvature, and E* is the equivalent
Young’s modulus. For a contact between mono-sized spherical peb-
bles, R* = R/2 and E* = E/(2(1 − �2)), where R, E and � are the radius,
Young’s modulus and Poisson’s ratio of pebbles, respectively.

3. Prediction of failure initiation in a pebble bed

In this section we will introduce two  approaches for the pre-
diction of the initiation of pebble failure in a pebble bed. The first
method relies not only on numerical simulations based on DEM but
also analytical analysis, while the second one is completely numer-
ical. Furthermore, both methods will be discussed and compared.

3.1. Numerical-analytical method

The basic assumption of the first method is that the distribution
of the actual strain energy absorbed by pebbles and the distribution
of the strength of single pebbles in terms of critical strain energy
are two independent events. Furthermore, we assume that both
events are not affected by the failure of pebbles, which seems to be
acceptable as long as only a small number of pebbles have failed in
the pebble bed.

For the case that the failure of spheres would be dominated by
the maximum contact force, the failure probability of all spheres,
i.e., the number of crushed spheres divided by the number of all
spheres, has been derived by [10]

Pf =
∫ Fmax

Fmin

ps(F = �)P̃(F > �)d�,  (4)

where the integration variable � represents the critical contact
force, while Fmin and Fmax are the minimum and maximum con-
tact strength (critical contact force) for the spheres which are given
arbitrarily in their DEM simulations. ps(�) or ps(F = �)  is the PDF of
the contact strength. The notation P̃(F > �)  means the probability
of the maximum contact force exerted on a sphere being larger than
�. For continuous distributions, P̃(F > �)  =

∫ ∞
�

p(�)d� where
p(�) is the PDF of the maximum contact force on every sphere
obtained in DEM simulations.

Eq. (4) can be adopted for other strength models, such as the
critical energy distribution in our case, giving

Pf =
∫ Wcmax

Wcmin

ps(Wc = �)P̃e(Wa > �)d�

=
∫ Wcmax

Wcmin

ps(�)(1 − Pe(�))d�,  (5)

where the integration variable � now represents the critical energy
of pebbles, Wcmin and Wcmax are the minimum and maximum

critical energy for pebbles, pe(�)  and Pe(�)  are the PDF and the
cumulative density function (CDF), respectively, with respect to
the absorbed strain energy Wa in pebble beds. Similar to P̃(F > �),
P̃e(Wa > �)  means the probability of the strain energy absorbed by
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very sphere being larger than �.  The failure probability can also
e written as

f =
∫ Wamax

Wamin

P̃s(Wc < �)pe(Wa = �)d�

=
∫ Wamax

Wamin

Ps(�)pe(�)d�. (6)

ere, Wamin and Wamax are the minimum and maximum strain
nergy absorbed by pebbles. The notation P̃s(Wc < �)  means the
robability of the pebble strength being smaller than �.  For contin-

ous distributions, P̃s(Wc < �)  = Ps(�)  =
∫ �

−∞ ps(�)d�.  Note that
he CDF, e.g., Ps(x = �)  or Ps(�), is conventionally defined as the
robability of the random variable x not being bigger than the
eal number �,  that is, P̃s(x � �).  According to this definition, the
quation Ps(Wc = �)  = P̃s(Wc < �)  used in Eq. (6) might not hold
specially for discrete distributions. Moreover, both (5) and (6)
ay  have to be replaced by a summation of the kind

∑
ips(Wc =

i)P̃e(Wa > �i) or
∑

iP̃s(Wc < �i)pe(Wa = �i) for discrete distri-
utions where �i is the ith point of discontinuity of the discrete
istribution. However, P̃s(Wc � �)  = P̃s(Wc < �)  will always hold
or continuous distributions, such as Eq. (1) in our case, since the
robability of any specified strength � is zero, that is, P̃(Wc = �)  ≡
.

The physical meaning of Eq. (5) is that for a given critical energy,
amely Wc, the pebbles with an absorbed strain energy larger than
c, i.e., Wa > Wc, will fail. The physical meaning of Eq. (6) is that for

 given strain energy, namely Wa, the pebbles with a critical energy
ess than Wa, i.e., Wc < Wa, will fail. In fact, both equations describe
he same event. Moreover, it can be seen from both equations that
ebbles will not fail in the critical case, that is, Wa = Wc. If one con-
iders the pebble will fail at the critical case, Eqs. (5) and (6) have
o be slightly modified, i.e., P̃e(Wa � �)  instead of P̃e(Wa > �)  in
q. (5) and P̃s(Wc � �)  instead of P̃s(Wc < �)  in Eq. (6).  For con-
inuous distributions, it makes no difference whether to consider
he critical case or not. For discrete distributions, the probability
t the points of discontinuity might not be zero and consequently

˜e(Wa � �) /= P̃e(Wa > �)  and P̃s(Wc � �)  /= P̃s(Wc < �),  which
ndicates the significance of the critical case. In the critical case,
amely Wa = Wc, pebbles will fail or survive depending on our def-

nition.
It needs to be noted that there are necessary conditions for Eqs.

5) and (6),  namely
Wcmax

Wcmin

ps(�)d� = 1 and

∫ Wamax

Wamin

pe(�)d� = 1. (7)

he minimum critical energy Wcmin has to be a positive value in
iew of its physical meaning. For theoretical analysis, ps(�)  and
orresponding Wcmin and Wcmax satisfying Eq. (7) can be prescribed
rbitrarily, e.g., Eq. (3) in the paper [10]. For practical application
ike our case, the distribution ps(�)  may  be derived from experi-

ental data by fitting. There are two points in the course of deriving
s(�).

First, crush experiments should be carried out on pebbles which
re statistically the same in the aspect of size, shape, batch, under
he same environment, etc. The variation of the crush loads for the
ebbles arises from the random existence of natural flaws in them.
s a consequence of random size and position of the natural flaws,

he pebble strength will be a continuous distribution in principle. It
ill be reasonable to use a continuous fitting function of ps(�). The
tting function can be any kind of reasonable distributions, such as
 Weibull distribution.
Second, either all the parameters or part of them in the fitting

unction can be obtained from experimental data. For the former
ase, if there is no default value of Wcmin, unlike in Eq. (1) where
Fig. 1. An example of continuous ps and pe where P̃s(� < Wcmin) = P̃e(� <
Wamin) = P̃s(� > Wcmax) = P̃e(� > Wamax) = 0.

Wcmin = 0 is default, Wcmin will be one of the fitting parameters. It
is possible, from the mathematical point of view, that the fitting
parameter Wcmin is smaller than 0. If so, there would exist a nega-
tive strength which is physically impossible. Therefore, the fitting
function of ps has to be carefully chosen so that the resultant Wcmin
will be not smaller than zero. In case only part of the parameters
are fitted, one or more parameters are prescribed in order to avoid
physically impossible values like Wcmin < 0. One can consider set-
ting the Wcmin to be the one corresponding to the minimum crush
load found in crush tests. The distribution of pe(�) has to be derived
from DEM simulations. In particular, the probability P̃e(� � 0) can
be larger than zero, which means there might exist some spheres
having no contact with others.

For continuous distributions, an example of possible ps(�)  and
pe(�) is shown in Fig. 1. It can be seen from this figure that the
interval in both Eqs. (5) and (6) can be reduced to [Wmin,Wmax]=
[Wcmin,Wcmax]∩[Wamin,Wamax] in view of P̃s(� < Wcmin) = P̃e(� <
Wamin) = P̃s(� > Wcmax) = P̃e(� > Wamax) = 0. Since Wcmin is a
non-negative parameter in view of its physical meaning, Wmin
is a non-negative value as well. If the intersection [Wmin, Wmax]
is an empty set, the failure probability Pf is either 0, i.e., for
Wamax < Wcmin, or 1, i.e., for Wamin > Wcmax. For discrete distribu-
tions containing points of discontinuity at which the probability is
not equal to zero, we would have to define whether the pebble will
fail in the critical case as previously mentioned.

However, in our case we have taken a continuous ps(�). We
will also consider a continuous pe(�), to be specific, in the form of
a three parameter Weibull distribution, and consequently we do
not need to discuss the situation of the critical case when Wa = Wc.
The parameters of pe(�) will be determined by fit of strain energy
distributions.

Neglecting pebble failure during loading, the strain energy dis-
tribution among pebbles can be obtained from DEM simulations.
Fig. 2 shows the strain energy distribution Pe in one assembly
(PF = 64.141%) for different load levels subjected to uniaxial strain
loading, i.e., εx = εy = 0, εz < 0. The energy is normalized by Wn cor-
responding to the strain energy absorbed by a pair of contacting
pebbles subjected to a normal load of Fave given by

Wn = 2cF5/3
ave . (8)
Here, Fave is the mean value of all normal contact forces present in
the particle assembly, and c is defined in Eq. (3).  It becomes obvi-
ous that there is a master curve representing all load levels for the
considered PF = 64.141%. For uniaxial loading this master curve has
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ig. 2. Normalized strain energy distribution Pe under different load levels for
niaxial loading. Negative strain stands for compression. The different markers
orrespond to increasing levels of prescribed uniaxial macroscopic strain.

een confirmed for further load levels, and even for other PFs. Two
ases for other PFs are shown in Fig. 3. The probability at Wa = 0 is
pproximately 0.12, meaning that about 12% pebbles have no con-
acts at all during loading. This is possible since gravity is not taken
nto account. For triaxial loading, i.e., εx = εy = εz < 0, there exists a

aster curve as well, however it is different from the one for uni-
xial loading. Both master curves are fitted by a three parameter
eibull distribution, that is,

(x) = 1 − exp

(
−
(

x − b

a

)m
)

, (9)

here a, b and m are fitting parameters, and the variable x corre-
ponds to Wa/Wn. The fitting parameters are a = 2.46, b = −0.398,
nd m = 1.08 for uniaxial loading and a = 2.94, b = −0.809, and

 = 1.61 for triaxial loading, respectively. Fig. 4 shows the corre-
ponding fitting curves.

Care should be taken that the fitting function is not the CDF
f Pe(�)  unless the fitting parameter b is not smaller than zero. If
 � 0, b corresponds to the minimum strain energy Wamin. However,
n our case b is smaller than zero. If we take the fitting functions
s the Pe(�), there would exist the possibility of negative strain
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Fig. 4. Fitting curves for normalized strain energy distribution Pe for uniaxial and
triaxial loading.

energy which is physically impossible. Alternatively, we can define
the Pe(�)  based on the fitting functions as

Pe(�) =

⎧⎨
⎩

1 − exp

(
−
(

� + 0.398
2.46

)1.08
)

� � 0

0  � < 0

for uniaxial loading, (10)

Pe(�) =

⎧⎨
⎩

1 − exp

(
−
(

� + 0.809
2.94

)1.61
)

� � 0

0 �  < 0

for triaxial loading, (11)

where the normalized energy � corresponds to Wa/Wn. Such
definitions of Pe mean the minimum strain energy Wamin is
zero. The interval for both distributions in Eqs. (11) and (10) is
[Wamin,Wamax]=[0,∞]. Eqs. (11) and (10) are non-continuous CDFs.
At the point of discontinuity � = 0 we define that pebbles having
no strain energy will not fail no matter what the strength is.

Substitution of Eqs. (11) and (10), respectively, and (8),  (1) into
(5), where [Wcmin, Wcmax] = [0, ∞],  yields the failure probability

Pf in terms of Fave for uniaxial and triaxial loading. The results
are shown in Fig. 5. Alternatively, the same results can be derived
when substituting the PDFs corresponding to Eqs. (11) and (10)
into (6),  respectively. It should be noted that the failure probability
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Fig. 5. Predicted failure probability Pf for pebbles from the batch OSi 07/1 in pebble
beds.
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f becomes unreliable with increasing Fave, because the true
istribution Pe will be modified by crushed pebbles.

The failure probability Pf in Fig. 5 can also be expressed in terms
f macroscopic stresses, e.g., the macroscopic stress �z along the
oading direction or the hydrostatic pressure. Fig. 6 shows the rela-
ions between Fave and �z as well as the relations between Fave

nd hydrostatic pressure for some PFs computed for uniaxial load-
ng under the assumption that no pebbles will fail. In both cases,
he relation obviously depends on the PF. As a result, the relation
etween Pf and �z or hydrostatic pressure will be dependent on PF.

The method presented in this subsection is based on numerical
esults, such as Figs. 4 and 6, and analytical analysis, such as Eqs. (5)
r (6) as well as the experimental results, such as Eq. (1).  The strain
nergy distribution Pe or pe depends on the loading method (see
ig. 4) and is independent of PF as previously mentioned. For both
niaxial and triaxial loading methods, it is further found that the
train energy distribution only depends on the internal parameter
ave. Thus, the failure probability Pf is preferred to be expressed
n terms of Fave, i.e., Pf(Fave) in Fig. 5, rather than of macroscopic
tresses and PF, i.e., Pf(�, PF). In order to make use of the predic-
ion of Pf(Fave) for practical application, first we need to know the
oading method and initial PF of pebble beds before any loading.
econd we compute the corresponding Fave under a given macro-
copic stress which can be measured. Finally, the failure probability
an be predicted by the computed Fave and Ps(Fave).

.2. Numerical method

We now introduce a second, purely numerical method for the
rediction of failure initiation. We  recall that any pebble in DEM
imulations fails when Wa > Wc. For the implementation of the
ethod, a critical energy Wc is prescribed to each pebble. To begin
ith, every pebble in the simulation, after having been picked ran-
omly, is associated with a unique identification number (ID) such
hat we can record the information of the pebble during loading. As
escribed in the following, a Monte Carlo method is used to assign
o each pebble a critical energy such that the distribution of Wc-
alues among all pebbles is in agreement with the critical energy
istribution ps, i.e., Eq. (1).

A pair of statistically independent random numbers (Wc, p) is

enerated in the range of 0 � Wc � Wu

c and 0 � p � pmax. In prin-
iple, the random number Wc should be generated in the range of
� Wc < ∞.  However, it is necessary to select an upper limit of Wc in
he Monto Carlo method. An appropriate value for this upper limit
Fig. 7. Random numbers satisfying p � ps(Wc), where ps is the PDF of the critical
energy for pebbles.

Wu
c has to be selected such that

∫ Wu
c

0
ps(Wc)dWc ≈ 1. In our case,

this value was obtained as Wu
c = 0.000016, which corresponds to∫ Wu

c
0

ps(Wc)dWc = 0.9998. The upper limit of the random number
p in this method is, at least, larger than the maximum ps(Wc) for
any possible Wc. In this work, we  used pmax = 160, 000. Care should
be taken that the ps(Wc) depends on the batch of pebbles. The dis-
tribution ps(Wc) used in this work is derived for pebbles from the
batch OSi 07/1 mentioned before.

From the pair (Wc, p) generated randomly in this way, if the
value of p lies below the PDF, i.e., p � ps(Wc) holds, the first pebble
(ID = 1) is assigned to the corresponding value of Wc as its criti-
cal energy. If p > ps(Wc), the corresponding pair (Wc, p) has to be
discarded. Subsequently, we generate another pair of random num-
bers in the range 0 � Wc � Wu

c and 0 � p � pmax, and Wc will be
assigned to the second pebble (ID = 2) if p � ps(Wc). This procedure
is repeated until every pebble has a prescribed critical energy. Fig. 7
shows 5000 pairs of (Wc, p) satisfying p � ps(Wc) together with
ps(Wc). Both assignment of ID number and critical energy are two
independent and random events. As a result, it can be regarded that
a critical energy has been assigned to all pebbles, and the distribu-
tion of Wc for all pebbles will satisfy the distribution of the critical
energy, i.e., Eq. (1),  as in the example of Fig. 7.

We now define the initiation of failure in the pebble bed dur-
ing a simulation as the instant or load level, when Nf pebbles have
reached their critical energy. The number Nf of crushed pebbles
can be computed from a prescribed failure probability as Nf = PfN,
where N is the total number of pebbles, in our case N = 5000. Note
that the value of Pf should be properly chosen such that Nf is an
integer. Pf is set to 0.02% in our simulations. This corresponds to
one crushed pebble out of 5000 pebbles in a unit box, meaning that
we define the initiation of failure in the pebble bed, once the first
pebble has reached its critical energy.

In the simulations, assemblies of spheres are compressed uni-
axially or triaxially by strain loading. When the first pebble fails,
the corresponding macroscopic stress �z along the loading direc-
tion and the average contact force Fave are taken as the load level
for failure initiation. A large number of simulations are performed
so as to obtain statistical information on the critical load level for
failure initiation. Each set of simulations corresponds to one ini-
tial configuration of pebble beds. For one set corresponding to one

PF, first, uniaxial or triaxial loading is performed for non-crushable
pebbles, and after a small load step when the equilibrium state is
achieved we  take the strain energy of every pebble, the correspond-
ing macroscopic stresses and Fave. Second, each pebble is assigned
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Table  1
The mean critical load level for failure initiation with standard deviation (SD) for
failure probability of Pf = 0.02%, resulting from 1000 simulations for each PF. In each
simulation, 5000 spheres are compressed uniaxially (Uni) or triaxially (Tri).

N = 5000, Nf = 1 Fave (N) �z (MPa)

Uni PF ≈ 62.6% 0.450±0.099 2.410±0.568
PF ≈ 63.4% 0.447±0.099 2.547±0.602
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PF ≈ 64.0% 0.449±0.097 2.752±0.630
Tri  PF ≈ 64.0% 0.518±0.114 2.544±0.583

o a critical energy as described above. Third, we  check if there is
ny pebble crushed, namely Wa > Wc, beginning from strain energy
ata obtained from the initial load step. If one or more pebbles are
ound to be crushed, then the corresponding macroscopic stresses
nd Fave are recorded as the load level for failure initiation. If no
ebble failed in this step, then the next load step or higher loads
re applied until the load level for failure initiation is identified. For
ne set of simulations, assignments of critical energy are randomly
erformed 100 times. Consequently, there will be 100 resulting

oad levels for failure initiation. In other words, a set of simulations
nclude 100 load levels for the same PF. Moreover, for each level of
F as listed in Table 1 ten different initial configurations have been
reated. Accordingly, there are 1000 load levels for failure initiation
or a similar PF.

Table 1 shows the mean values of Fave and �z and their stan-
ard deviations for several PFs. Note that the distributions of the
trength of pebbles in different simulations have been randomly
enerated leading to the variation of failure initiation load levels
ven for the same PF. It can be seen from Table 1 that for uniax-
al loading the PF has no influence on Fave for failure initiation. On
he other hand, �z becomes higher with increasing PF, even though
ave and �z belong to the same load level. This is possible, since the
elation between them depends on the PF, as has been shown in
he discussion of Fig. 6. The loading method (uniaxial, triaxial) has
n influence on both Fave and �z . Compared to the uniaxial load-
ng for the same PF(≈64.0%), Fave for triaxial loading is significantly
igher, but the stress which is the same along either axial or lateral
irection decreases to some extent.

The distribution of �z for a PF≈64.0% resulting from uniaxial
oading is shown in Fig. 8. There are ten sets, corresponding to
en different initial configurations with approximately the same

F≈64.0%. The probability estimator P(xi) = i/(N + 1) is used here
here xi is the ith load level in an ascending sequence of all load

evels obtained from the simulations. One can see that failure
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ig. 8. Distribution of load levels for Pf = 0.02%. �z is the macroscopic stress along
he loading axis for uniaxial loading. There are 100 obtained load levels for each set.
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initiation could start under a small load level, and the load levels
are distributed in a wide range, i.e., �z ranges from 1 to 4.6 MPa.
Compared with the previous investigation [3] which used directly
the crush test data and the failure criterion based on inter-granular
forces, the current study provides more detailed information on
the actual load distribution associated with failure initiation, as
shown in Fig. 8.

According to our principle approach, the critical load level is
defined to being reached, once the first pebble fails. In practice,
the strain loading is applied gradually and checking all pebbles for
failure, i.e., Wa > Wc, is made after each load step when the assembly
of pebbles has reached an equilibrium state. Although each load
step has been chosen small, it was  sometimes found that more than
one pebble is crushed after a load step. This means the derived
load level for Pf = 0.02%, i.e., crushing of the first pebble, is slightly
overestimated.

3.3. Discussion of both methods

In the numerical-analytical method, for any prescribed Pf it is
easy to obtain the corresponding load level in terms of either Fave

or � from Figs. 5 and 6. The load level predicted in this method is
kind of an average value with unknown error band. Moreover, the
validity of this method highly depends on the assumption that the
strain energy distribution among pebbles is not influenced by the
failure of pebbles. This assumption may  not be valid when many
pebbles are crushed. However, the method does not offer a pos-
sibility to detect when the assumptions will be violated. In this
sense, Pf defining the failure initiation has to be very small for the
numerical-analytical method.

In the numerical method, failure initiation means per defini-
tion that Nf = PfN pebbles have failed. In particular, as we  define
the crushing of the first pebbles as the failure initiation, the under-
lying DEM simulations are more accurate than the predictions by
the numerical-analytical method. Furthermore, this method gives
not only a single value for failure initiation, but more information
in the form of the distribution of the load level (see Fig. 8). How-
ever, the disadvantage of this method that it is more computational
expensive.

For a failure probability Pf = 0.02%, the predicted load level using
the numerical-analytical method is Fave = 0.466 N for uniaxial load-
ing, and Fave = 0.549 N for triaxial loading. Both of them are slightly
higher than the corresponding values reported in Table 1. Accord-
ing to Fig. 6, Fave = 0.466 N corresponds to a uniaxial pressure of
about 2.5 MPa  for various PFs. As will be discussed later, the overall
stress–strain relation will not be influenced until a uniaxial pres-
sure of about 4 MPa, which means that there will be a fraction of
pebbles which have already been crushed during loading while it
cannot be realized from the overall stress–strain curves.

4. Modeling of failure propagation in a pebble bed

According to Fig. 8, pebbles may  fail even under a very small
load level. Consequently, the failure of pebbles is almost unavoid-
able during mechanical loading. Hence, it is essential to study, in
addition to failure initiation, the influence of failure propagation
on the macroscopic response. For example, it is of concern from
which fraction of crushed pebbles on the macroscopic stress–strain
relation will be influenced.

4.1. Characterization of crushed pebbles
To begin with, two  assumptions are made in this work about,
first, the shape of crushed pebbles and, second, their critical energy
after a crushing event. As for the shape of crushed pebbles, different
failure forms of Li4SiO4 pebbles have been found in crush test [13].
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ig. 9. Influence of reduction ratio on the stress–strain relation along the loading
xis  for uniaxial loading.

n this work it is assumed that the crushed pebbles still have a
pherical shape but with a smaller size. A reduction ratio r , defined
s the ratio of pebble size after and before failure, is introduced. The
atio has to be chosen in advance from a range from 0 to 1. r =0
orresponds to the case that crushed pebbles are removed, and r =1
orresponds to the case that no failure of pebbles occurs in pebble
eds. As for the critical energy for crushed pebbles, it is assumed to
e the same as before failure. In this way, we allow for pebbles to
ail several times during loading.

Obviously, the proposed method of size reduction for crushed
ebbles violates mass conservation. However, in this study which
rovides a first attempt to investigate failure propagation inside
ebble beds using a simplified model, this seems to be acceptable

n view of the following aspects: First, we do not consider any phys-
cal inertia effects. Second, removing mass from the simulation by
he reduction of the radius and, thus, by reduction of the volume,
orresponds to the assumption that the part of the crushed pebble
emoved no longer contributes to the force chains, and thus can be
eglected in the DEM simulations.

.2. Simulation results

Fig. 9 shows the influence of the reduction ratio r on the
acroscopic stress–strain relation for uniaxial loading. Strain load

s applied in small increments (increase 0.0015% per step) up
o 3%, from which point on unloading takes place. Even if the
ize of crushed pebbles is slightly reduced, such as r =0.99,
he stress–strain relation changes significantly compared to r =1

eaning pebbles are non-crushable. A large r can represent a fail-
re form where a small fragment of the pebble peels off. It can
e seen that the pebble assembly can sustain more load for a big

 with increasing strain. On the other hand, a stress plateau is
eached beyond a strain of about 0.7% for a r less than 0.85. It
s found that for a small r like 0.1 the crushed pebbles will not fail
gain, or even have no contacts at all after failure. Their presence
oes not contribute to the force chains in the pebble bed, and so
he macroscopic stress will not be influenced by them. Therefore,
he stress–strain response, i.e., the stress plateau, should be inde-
endent of the crushed pebbles for small r . It is expected that this

lateau will exist for the limit case r =0 when crushed pebbles are
emoved completely, which is in agreement with the finding by
16,10]. Note that the stress plateau for a smaller r found in our
imulations will not last forever with increasing strain in laboratory
Fig. 10. Influence of the friction coefficient between pebbles on the macroscopic
stress–strain relation along the loading axis for uniaxial loading: (a) reduction ratio
r  =0.95 and (b) reduction ratio r =0.1.

compression experiments as, other than assumed in the previous
subsection, the fragments of crushed pebbles will actually still stay
in the pebble bed. This means they eventually can carry load (con-
tact forces) again when the macroscopic strain gets very large.

In the following analysis, r =0.95 and r =0.1 will be considered
which correspond to that either a small fragment of the pebble peels
off or that crushed pebbles have no influence on the stress–strain
relation, respectively. Fig. 10(a) and (b) shows the influence of the
friction coefficient between pebbles. For both reduction ratios, a
large friction coefficient � gives rise to a high peak stress before
the stress plateau. However, the peak stress almost stays the same
for � > 0.5. For r =0.95, the stress plateau following the stress peak
becomes independent of the friction coefficient for a large strain.
For r =0.1, the stress plateau also appears after the stress peak, but
it divides into two  scenarios, one for smaller friction coefficients
and the other for larger friction coefficients.

Fig. 11(a) and (b) shows the influence of the PF on the
stress–strain relation along the loading axis. For both r =0.95 and

0.1, a higher initial PF leads to a larger stress at small strains.
The unloading curves show the same stiffness for different initial
PFs. For r =0.1, different PFs give the same stress plateau which
begins at different strain values. There is no stress plateau found
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Table 2
Statistical information on the number of center points of crushed pebbles falling
into one of 27 sub-boxes. Nf crushed pebbles are found during loading up to the
maximum strain of 3% for PF = 63.728 and � = 0.1.

r Nf Nf/27 SDa SDb

0.95 528 19.6 4.11 (2.49, 6.39)
0.1  269 9.96 3.44 (1.83, 4.64)

the results from both methods, failure initiation can occur under
ion along the loading axis for uniaxial loading: (a) reduction ratio r =0.95 and (b)
eduction ratio r =0.1.

or r =0.95 since the crushed pebbles can still carry contact forces
lthough their force-carrying ability will decrease. Consequently,
he macroscopic stresses can increase with increasing strains for

 =0.95. On the other hand, crushed pebbles have no contribution
o the force chains for r =0.1. During unloading, the same stiffness
eads to the same stress–strain curve. Note that the unloading curve
eflects the elastic deformation of pebble beds.

It is of interest to know how large a fraction of crushed pebbles
s needed to affect the macroscopic stress–strain relation. Whether
rushed pebbles have an influence on this relation can be charac-
erized by introducing a critical difference between the stresses for
rushable and non-crushable pebbles at the same strain. The critical
ifference has to be defined reasonably small. For example, we  may
et the critical difference to be 5%. For PF = 64.071% in Fig. 11(a), i.e.,

 =0.95, we counted the crushing of 11 pebbles during loading to
z = 0.67% or �z = 4.02 MPa  where the stress difference at the same
train reaches 5%. This corresponds to a fraction of 0.22% pebbles
rushed. For the same PF and a reduction ratio of r =0.1 in Fig. 11(b),
hen the critical difference has reached 5% there have been 10 peb-

les crushed with a loading level of εz = 0.67% or �z = 4.0 MPa. In this
ase the fraction of crushed pebbles has to be less than 0.2% in order
ot to influence the macroscopic stress–strain relation. For a low

nitial PF = 61.552% in Fig. 11(a) and (b), for both r =0.95 and 0.1 the
rushing of 5 pebbles corresponding to a fraction of 0.1% of crushed

ebbles during loading up to εz = 1% or �z = 2.5 MPa will lead to
eaching the critical difference of 5%. It can be seen that the fraction
f crushed pebble below which the macroscopic stress–strain is not
a SD for DEM simulations.
b For purposes of comparison: minimum and maximum SD for Nf points generated

randomly 2000 times.

influenced depends on PF while it is independent of the reduction
ratio r . This conclusion is meaningful for practical application.
For pebble beds subjected to compression test the macroscopic
stress–strain relation can be measured. This relation can also be
calculated from DEM simulations. Both relations should agree for
small load levels. When the critical difference between the relations
is reached, the fraction of crushed pebble can be estimated.

4.3. Spatial distribution of pebble failure

The overall stress–strain responses, as shown in Figs. 9–11,
present instabilities due to crushing events of pebbles. For pebble
beds with multi-sized spheres subjected to uniaxial loading, local-
ization of crushing of spheres has been observed by [16]. Other
than in the work presented here, a stress-dominated failure model
and rigid wall conditions have been used for the DEM simulations
on sphere crushing by [16]. If there would also be a localization of
crushed pebbles in our case, the mechanical and thermal properties
of the region where localization takes place could be significantly
modified compared to the properties of the bulk. Therefore, it is
beneficial to know the distribution of the position of crushed peb-
bles. In this work, we characterize the distribution of the position
of crushed pebbles statistically.

At first, the cubic unit box containing all pebbles is divided into
27 equal cubic “sub-boxes” like a classic Rubik’s cube. The number
of crushed pebbles found in each sub-box is counted according to
their center points. The mean number of crushed pebbles in each
sub-domain is Nf/27, and the standard deviation (SD) indicates the
scatter of their positions. A small SD denotes that crushed pebbles
are distributed uniformly. Table 2 shows the statistical information
of crushed pebbles.

In order to be able to judge if the SD for crushed pebbles is
small or big, additionally Nf points are generated randomly in a
unit box corresponding to the unit cell of the DEM simulations,
such that the points satisfy a uniform distribution. Then, the num-
ber of such points falling in each sub-box is counted. 2000 SDs
are derived by generating Nf points 2000 times. The minimum
and maximum values are shown in Table 2 for comparison. One
can see that the SD for crushed pebbles lies between the mini-
mum  and maximum one for uniform distributions, meaning that
the distribution of the position of crushed pebbles is fairly uniform.
Thus we  can conclude that localization of crushed pebbles does not
happen.

5. Conclusions

The influence of pebble failure on the overall response of pebble
beds subjected to mechanical loading is investigated in this work.
The pebble strength used in this work is derived from Li4SiO4
pebbles from the batch OSi 07/1. Failure initiation is studied with
both a numerical-analytical and a numerical method. According to
load levels with low compressive stresses. In particular, if failure
initiation is defined as soon as 0.02% of the pebbles have crushed,
this corresponds to a uniaxial pressure of about 2.5 MPa. Therefore,
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he subsequent failure propagation is studied by introducing a
eduction ratio for the size of crushed pebbles. A slight reduction
f the size of pebbles after crushing, such as r =0.99, will greatly
nfluence the overall stress response of the pebble bed. Below

 certain reduction ratio, r �0.85, the stress–strain relation is
ardly influenced by crushed pebbles and a stress plateau appears.
or various reduction ratios, the unloading stiffness is almost
he same. Moreover, the influence of the friction coefficient and
acking factor is also discussed. A higher friction coefficient leads
o a larger peak stress before the stress plateau. A lower packing
actor leads to a more compliant stress response at the same strain
evel. Finally, it is found that there is no significant localization of
rushed pebbles during failure propagation.
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