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Capillary penetration of liquids in porous media is of great importance in many applications and the abil-
ity to tune such penetration processes is increasingly sought after. In general, liquid penetration can be
retarded or restricted by the evaporation of volatile liquid at the surface of the porous media. Moreover,
when capillary penetration occurs in a porous layer with non-uniform cross section, the penetration pro-
cess can be accelerated or impeded by adjusting the section geometry. In this work, on the basis of
Darcy’s Law and mass conservation, a theoretical model of capillary penetration combining evaporation
effects in two-dimensional homogeneous porous media of varying cross-section is developed and further
examined by numerical simulations. The effects of sample geometry and liquid evaporation on capillary
penetration are quantitatively analyzed. Results show that the penetration velocity is sensitive to the
geometry of the porous layer, and can be tuned by varying the evaporation rate for a given geometry.
Under given evaporation conditions, penetration is restricted to a limited region with a predictable
boundary. Furthermore, we find that the inhibition of liquid penetration by evaporation can be offset
by varying the geometry of the porous layer. The theoretical model is further extended to model the
capillary flow in three-dimensional porous media. The interplay of geometry and evaporation during
the capillary flow process in 3D conditions is also investigated. The results obtained can be used to facil-
itate the design of porous structures to achieve tunable capillary penetration for practical applications in
various fields.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

When a dry porous medium contacts a liquid reservoir, the liq-
uid is transported into the porous medium driven by capillary
force. This phenomenon is known as capillary penetration.
Capillary penetration in porous media is commonly observed in
phenomena such as water absorbing into paper [1] and rising
damp in concrete walls [2]. Recently, capillary penetration has
attracted increasing scientific and industrial attention, owing to
the high value of its diverse contemporary applications including
paper-based microfluidics [3,4], medical diagnosis [5], energy-
harvesting devices [6,7], advanced textile engineering [8,9], cooling
devices [10], architectural conservation [11], and oil recovery [12].
Capillary penetration has also been utilized as an inverse method
to determine the effective properties (e.g., the pore size distribution
and porosity) of porous media in both numerical [13,14] and
experimental [15–17] approaches.

Capillary penetration in porous media shares a similar dynamic
mechanism with capillary flow in hollow tubes, with both
processes resisted by viscous forces [18]. For a capillary tube with
an one-dimensional (1D) uniform geometry, dynamic liquid
penetration is quantified by a diffusive relationship between the
position of the liquid front L and time t, i.e., L2 ¼ Dt, where D is
the diffusive coefficient depending on the tube size and the liquid
properties [19]. This relationship is best known as the ‘‘Lucas–
Washburn (LW) law”, presented by Lucas [20] and Washburn
[21] a century ago. This classical result has been found to be valid
for both unidirectional and radial capillary penetration in porous
media [22–25], and is further extended to the hemispherical pen-
etration in a semi-infinite porous medium [26] and imbibition in
structured porous media with axially variable geometries [27].
However, recent studies have also indicated that this simple model
is not applicable for some complex cases, such as flow processes in
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Fig. 1. Schematic illustration of capillary penetration incorporating evaporation
effect in a trapezoidal porous plate: (a) oblique view; (b) side view.
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heterogeneous and random porous media, and some other effects,
e.g., fractal and disorder, should be incorporated into the analysis
[28–32].

Tuning capillary penetration processes in porous media, with an
emphasis on penetration velocity, is of increasing interest in the
burgeoning field of microfluidics [33]. However, the control of fluid
flow is not readily achievable by tuning the pore size and porosity
for most commonly used porous media such as paper substrates
[34]. For the purpose of facilitating control, applied porous media
are commonly considered to have different cross sections in the
direction of capillary flows [27,35]. Recently, Benner and Petsev
[36] pointed out that varying the shape of a porous material leads
to qualitative differences in the resulting flow patterns. Addition-
ally, Shou et al. [37] explored the geometry-induced asymmetric
capillary flow in porous structures. They found that the geometri-
cal shape has a significant effect on the flow behavior. Subse-
quently, rational design of porous structures for enhanced and
controlled capillary flows have been investigated [38,39]. Notably,
previous studies have revealed that the capillary penetration in
non-uniform porous structures should be treated as a two- (2D)
or three-dimensional (3D) situation, and the time dependence of
the flow deviates from the LW 1D case [26,36,39].

A key factor affecting capillary penetration is the evaporation of
liquid from the surface of porous media [40,41], with particular rel-
evance for highly volatile liquids, such as the detecting reagent,
used in paper-based sensors and diagnostics [42]. Evaporation also
has a significant effect on some practical respects, such as soil pen-
etration of water in irrigation processes [43], liquid flow in fuel
cells [44], and liquid transfer in capillary evaporators [45]. Experi-
mental results revealed that capillary penetration in porous media
is strongly affected by evaporation, which restricts liquid penetra-
tion to a limited region [46]. In order to quantitatively investigate
the evaporation effect in unidirectional penetration, the Lucas–
Washburn law was employed and augmented by Fries et al. [40]
to model dynamic wicking processes. Recently, Liu et al. [47]
reported a model based on Darcy’s law and the principle of mass
conservation for radial capillary penetration, in which the bound-
ary of the limited liquid penetrated region was predicted theoret-
ically. In their study the geometry was held constant and thus the
penetration process was not tunable.

Although capillary penetration in porous systems has been
extensively investigated, little work has dealt with the combined
effects of geometry and evaporation during capillary penetration.
The development of capillary-driven microsystems for energy
and biotechnology applications requires precise control and regu-
lation of the penetration process, including velocity and total pen-
etration time. An improved mechanistic understanding of capillary
penetration with combined geometrical and evaporation effects
will facilitate the application and design of porous structures. From
this perspective, we present here a theoretical and numerical study
on the combined effects of geometry and evaporation on penetra-
tion processes in porous media, with a view towards tunable cap-
illary flow. Porous structures with 2D non-uniform cross-sectional
geometric shape are considered first, and the analysis is further
extended to 3D porous structures.
2. Theoretical model

To investigate the combined effects of geometry and evapora-
tion on the capillary penetration through homogenous porous
media, a trapezoidal thin porous plate with one end contacting
with an unlimited reservoir is considered, as shown in Fig. 1. As
a simple case of 2D porous sample with a non-uniform cross
section, the trapezoidal structure has essential geometric features
such as asymmetry and shape variation that facilitate the
investigation of the basic effect of the sample geometry on fluid
penetration in porous media [37]. The penetration processes takes
place from the liquid reservoir to the other end of the plate (see,
Fig. 1a), and is weakened by the concurrent evaporation of liquid
from the plate surfaces (see Fig. 1b).

As shown in Fig. 1a, the considered porous plate has a trape-
zoidal geometrical shape. The width of the plate varies with the
position as the following relation,

wðdÞ ¼ w0 1� d
l0
ð1� aÞ

� �
; ð1Þ

where w0 is the width of the edge in contact with the reservoir, l0
the length of the plate sample, and d the local position in the pen-
etrated region. The thickness of the porous plate H is much smaller
than its length dimension l0 such that it can be treated as a planar
problem. To study the effect of plate geometry we define a param-
eter a ¼ w1=w0, where w1 is the width of the top edge. The geome-
try of the plate can also be characterized by the base angle b of the
trapezoid, which is related to the geometrical factors by

cot b ¼ w0

2l0
� ða� 1Þ; a P 1

ð1� aÞ; a < 1

�
: ð2Þ

It is noteworthy that the liquid penetration in this trapezoidal
porous plate is technically not a simple 1D problem. As discussed
in the previous work [36], the liquid flux in the transverse direction
of the flow is not generally zero and depends on the opening angle
of the expansion (contraction), which is different from the penetra-
tion in a uniform plate (i.e., a ¼ 1). The liquid front is in general not
a straight line perpendicular to the flow direction, which is
involved in the 1D case, but an elliptic curve. Therefore, this case
should be regarded as a 2D problem. According to the results of Eli-
zalde et al., [39] however, the relative error of flat liquid front
assumption in the 1D model, in comparison with the 2D model,
is small even if the opening angle as large as 90�, which corre-
sponds to a base angle b of 135� in our model. Therefore, to sim-
plify the analysis, we adopt the 1D assumption of flat liquid front
(see Fig. 1a) to establish the theoretical model involving the evap-
oration effect, and the predictions are further examined using
numerical simulations in following Section.

We consider the evaporation of liquid from the penetrated
region shown in Fig. 1b. A constant and uniform evaporation rate
is assumed for a given liquid, ambient temperature, and relative
humidity. The total mass flow rate due to evaporation can be
calculated as

_Me ¼ 2 � _me � 12 ½wð0Þ þwðlÞ� � l; ð3Þ

where _me is the evaporation rate, which is used to characterize the
evaporation of liquid (i.e., the mass loss due to the evaporation per
area and time) with the dimension of [kg/m2�s], and l is the length of
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the penetrated region. From Eq. (1), wð0Þ can be calculated as w0.
Note that the factor ‘‘2” in the right side of Eq. (3) indicates the
assumption of equal evaporation from front and back surfaces in
Fig. 1a. Moreover, evaporation from the secondary side surfaces
are neglected owing to the negligible thickness assumed here.

When evaporation is included, mass transfer in porous media
conforms to the law of mass conservation. For the considered thin
porous plate with porosity / and assuming negligible volume
changes, the conservation of mass can be expressed as

_d �wðdÞH/ ¼ _l �wðlÞH/þ 2 � _me

q
� 1
2
½wðdÞ þwðlÞ� � ðl� dÞ; ð4Þ

where q is the fluid density, and _d ¼ dd=dt and _l ¼ dl=dt are the local
fluid velocity and the liquid front velocity, respectively. Further-
more, in the penetration process, the flow rate Q in a porous med-
ium is obtained based on Darcy’s law as

Q ¼ _dA/ ¼ �Ak
l

@P
@d

; ð5Þ

where A ¼ wðdÞ � H is the cross sectional area of the plate at position
d, k is the permeability of the porous medium, l is the viscosity of
the liquid, and P is the pressure of liquid.

Combining Eqs. (4) and (5), one obtains

Pc ¼ /l
k

lþ l0
a� 1

� �
ln 1þ l

l0
ða� 1Þ

� �
dl
dt

þ l _me

kqH
lþ l0

a� 1

� �2

ln 1þ l
l0
ða� 1Þ

� �
� l
2

lþ 2l0
a� 1

� �" #
;

ð6Þ
where Pc ¼ 2r cos hs=Reff is the capillary force, governed by the air–
liquid surface tension, r, the equilibrium contact angle of the liquid
with the solid, hs, and the effective pore radius of the porous med-
ium, Reff . The second part of the right side in Eq. (6) refers to the
evaporation-induced viscous pressure loss Pm, which represents
the viscous resistance to liquid front movement in the penetration
process. According to the above equation, the penetration distance
(i.e., the liquid front position) can be predicted as a function of time.
It should be noted that this model is valid only for cases exhibiting a
sharp liquid front, i.e., the penetrated region behind the interface is
fully-saturated. In addition, its validity is limited to horizontal pen-
etration or vertical penetration without gravity.

Asymmetric penetration is examined by changing the value of
a. As a limiting case of uniform cross section, a ¼ 1, Eq. (6) reduces
to the solution provided by Fries et al. [40]. Another limiting case is
that of negligible evaporation, _me ¼ 0, whereby Eq. (6) reduces to
the classical model [38].When a ¼ 1 and _me ¼ 0 both meet, the
original LW relation [20,21] is recovered.

3. Numerical simulation and results analysis

3.1. Numerical methods

As mentioned in the preceding section, a flat liquid front is
assumed in the theoretical model, which is only accurate and valid
for the 1D situation. COMSOLMultiphysics 5.2a finite element soft-
ware (COMSOL Inc., Burlington, MA) is used to simulate a full 2D
problem to examine the proposed model (i.e., Eq. (6)).

The 2D capillary penetration process in porous media can be
controlled by a set of simultaneous partial differential equations,
viz., Darcy’s law

v ¼ � ki
l
rP; ð7Þ

and the conservation of mass
r � q � ki
l
rP

� �� �
¼ F; ð8Þ

where q is the fluid density, ki ¼ k=/ is the interstitial permeability,
and F is a source term, which is related to the evaporation of liquid.
For negligible evaporation, F is set to zero; otherwise, it can be cal-
culated as F ¼ _me=H/.

The above Eqs. (7) and (8) govern the 2D penetration process in
the full region. When the cross section of the region is uniform,
they reduce to the 1D case, as given by Eqs. (5) and (4) with
a ¼ 1. By solving the set of equations, we can obtain the distribu-
tion of liquid flow velocity and the boundary of the penetration
region at any time.

In finite element analysis, the boundary conditions of the
numerical model are defined such that the left and right surfaces
are non-penetrable and symmetric and the reservoir-contacting
boundary is stationary. Note that the reservoir is exposed the
ambient atmosphere and thus the atmospheric pressure, Patm, is
fixed at the reservoir-contacting edge, while the pressure at the
fluid front is set as Patm � Pc , where Pc is the capillary pressure.
To track the velocity of a moving liquid front, a Moving Mesh mod-
ule is used in the COMSOL software [35]. To accommodate upward
motion of the boundary of the fluid front, side boundaries are
allowed to be stretched in the direction of flow, but not in the
direction perpendicular to flow. As the liquid front moves auto-
matic re-meshing is implemented to avoid mesh distortion. More-
over, a mesh sensitivity study has also been conducted a priori to
ensure the convergence of the numerical models.

3.2. Results and analysis

By applying the developed numerical model, the capillary pen-
etration process can be simulated for different geometrical shapes
and evaporation conditions. The simulation results of the time
dependent penetration distance are shown in Fig. 2 as symbols.
Also included are the theoretical predictions given by Eq. (6), rep-
resented by lines. Two sets of geometrical shapes, (a) a ¼ 100 (with
three base angles b = 105�, 120�, and 135�) and (b) a ¼ 0:01 (with
b = 45�, 60�, and 75�), are considered under different evaporation
rates (i.e., _me= _mc

e = 0, 1, 2 and 5). The results are made dimension-
less by two scaling parameters l0 and t0, where l0 is the length of

the plate sample, and t0 ¼ l/l20=2kPc is the time scale of the liquid
penetrating from the reservoir to the other end of a uniform porous
plate (i.e., the special case of a ¼ 1). The parameter _mc

e is the critical
evaporation rate that allows liquid to reach the end of the porous
plate away from the reservoir. The definition and characteristics
of _mc

e will be discussed later. For illustration, the representative
simulated results of penetration region with pressure profiles
(i.e., (a) b = 120� and (b) b = 60� with _me= _mc

e = 0 and 2) are included
as inserts in Fig. 2.

It can be clearly seen from the inserts in Fig. 2 that the liquid
fronts are not straight lines in the simulations. For a ¼ 100, the liq-
uid front is a convex curve (relative to the reservoir position), but a
concave curve for a ¼ 0:01. For simplification, we choose the mid-
dle point of the concave/convex curve to represent the liquid front
position, with results are plotted in Fig. 2 as symbols. It should be
noted that other selections of the representative point for the liq-
uid front position are also feasible. Although those selections
may lead to different relative errors, they do not affect the conclu-
sion drawn here. Numerical simulation and theoretical predictions
match closely for all geometrical shapes and evaporation condi-
tions. Specifically, relative error for all the three cases of a ¼ 100
(i.e., b = 105�, 120�, and 135�) is less than 5%. The small error found
may arise owing to the liquid flow velocity, which depends on the
pressure gradient following Darcy’s law, and is almost the same at
the centre line in 1D and 2D conditions. However, for the set of
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Fig. 2. Comparison of numerical simulations (symbols) and theoretical predictions (lines) of penetration distance versus time for asymmetric capillary penetration in a
porous sample with (a) a = 100 (with base angles b = 105�, 120�, and 135�) and (b) a = 0.01 (b = 45�, 60�, and 75�) under different evaporation rates ( _me= _mc

e = 0, 1, 2 and 5).
Dotted lines indicate the critical penetration distance. The insets show the simulated results of the penetration region with pressure profiles. The contours of the insets, from
red to blue, indicate the pressure level varying from Patm to Patm � Pc .
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a ¼ 0:01 (i.e., b = 45�, 60�, and 75�), due to the effect of the initial
reservoir-contacted boundary condition being more significant
than for the case of a ¼ 100, the relative error is also greater. It
can be found that the relative error is larger for smaller base angles
and larger evaporation rates, and the maximum value at the
extreme case of b = 45� and _me= _mc

e = 0 is about 20%. While for the
cases of b = 60� and 75� at the same condition, relative errors are
approximately 10% and 5%, respectively. Consequently, the theo-
retical model based on a 1D assumption is considered valid for
most samples with non-uniform geometrical shape.

Fig. 2 also shows the evaporation effect on asymmetric capillary
penetration. It can be seen that the penetration distance l=l0
increases with time t=t0 and the speed of penetration is smaller
for larger values of _me= _mc

e for both two sets of geometries
(a ¼ 100 and a ¼ 0:01). In similarity to the case of radial capillary
penetration,47 we identify a critical state whereby the penetrating
liquid can just reach the end of the porous plate under conditions
of _me ¼ _mc

e, as shown by the dash lines in Fig. 2. For evaporation
rates greater than the critical value, i.e., _me= _mc

e > 1, the penetration
distance approaches an asymptote (i.e., the critical l=l0) for suffi-
ciently long timeframes. It is thus an evaporation-limited penetra-
tion, with the critical length of penetration decreasing with
increasing the evaporation rate. In contrast, when _me= _mc

e 6 1, liq-
uid penetrates into the entire region for all geometries.

For unlimited penetration, under conditions of _me= _mc
e < 1, it is

interesting to note that the total penetration time also depends
on the geometrical shape for a given evaporation rate. Specifically,
penetration is faster for samples with small values of a. Moreover,
the penetration velocity for the case of a ¼ 100 (see Fig. 2a)
decreases over the entire penetration process. However, for the
case of a ¼ 0:01 shown in Fig. 2b, it is obvious that the penetration
velocity first decreases and then increases with increasing time.
This indicates that we can tune the capillary penetration process,
e.g., the penetration velocity or the total penetration time, by
controlling the geometrical shape of the porous layer and the
evaporation rate of the liquid.
0.0 0.4 0.8 1.2 1.6
0.0

t / t0

0.01 0.1 1 10α

Fig. 3. Variations of the normalized distance against the normalized time for
asymmetric capillary penetration with different geometrical shapes, the diamond
symbols refer to the transition position of the penetration velocity. Insert: The
normalized velocity transition position as a function of the geometrical factors.
4. Tuning capillary penetration in porous media

With the sustained development of capillary-based microsys-
tems, such as paper-based microfluidics, medical diagnosis and
energy-harvesting devices [3–7], precisely tuning of the capillary
penetration process in porous media is of emerging interest for
both scientists and engineers in recent years.
4.1. Transition of the penetration velocity

Capillary-driven devices for energy and biotechnology applica-
tions require precise control of the capillary penetration velocity.
As shown in the preceding section, for some porous samples
with special geometrical shapes under appropriate evaporation
conditions, the penetration velocity can increase with time
following an initial deceleration. This interesting feature of tunable
capillary penetration has ramifications towards potential multi-
functional applications in microfluidic devices for chemical analy-
sis and catalysis, which necessitate the precise control of flow
velocity [48].

Variation of the normalized capillary penetration distance with
normalized time for six geometries (a = 0, 0.1/e, 0.2/e, 0.5/e, 1/e, 3/e
and 10/e, with e being Euler’s number) are plotted in Fig. 3. As is
evident from the inflection of the plotted curves, the penetration
velocity transitions from a decreasing to an increasing trend during
the penetration process for samples with a 6 1=e. The transition
points are marked with diamond symbols for each line (see
Fig. 3), and occur at increasing distances for a values from 0 to
1=e. When a > 1=e, the transition disappears and the penetration
velocity decreases throughout the entire process. The variation of
the transition position with the geometrical factor is shown in
the insert in Fig. 3.
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The penetration velocity v ¼ dl=dt can be determined from Eq.
(6). Noting that dv=dt ¼ 0 at the transition position lt , the relation-
ship between evaporation rate, geometrical factor and transition
position can be obtained from Eq. (6), as
_me

_mc
eu

¼
2ða� 1Þ2f1þ ln 1þ lt

l0
ða� 1Þ

h i
g

1þ 1þ lt
l0
ða� 1Þ

� �2
� �

ln 1þ lt
l0
ða� 1Þ

h i
� 2 1þ lt

l0
ða� 1Þ

h i2
ln 1þ lt

l0
ða� 1Þ

h i2
� ða� 1Þ lt

l0
2þ lt

l0
ða� 1Þ

h i ; ð9Þ
where _mc
eu ¼ Pc � kqH=ll20 is a scaling parameter used to make the

evaporation rate dimensionless. For negligible evaporation, the
above equation reduces to an explicit expression for the transition
position as

lt
l0
¼ 1� e�1

1� a
: ð10Þ

This equation relates the transition point to the geometrical fac-
tor as shown in the insert of Fig. 3.

When the evaporation effect is non-negligible, by using Eq. (9),
the transition position lt=l0 can be predicted as a function of _me= _mc

eu

and a, as illustrated in Fig. 4a. In the blue region, the penetration
exhibits acceleration, while the decelerating penetration is
described by the green region. The interface between these two
regions presents the transition position of penetration velocity
lt=l0 and its dependence on parameters _me= _mc

eu and a, which is pre-
dicted quantitatively by Eq. (9). In this 3D phase diagram, the inter-
face between deceleration and acceleration reduces to a linear
boundary when evaporation is negligible, which has been dis-
cussed before and given in a special case as shown in the insert
in Fig. 3.

In order to more clearly show the transition position of penetra-
tion velocity for different geometry and evaporation conditions,
lt=l0 is plotted as a function of _me= _mc

eu for different values of a in
Fig. 4b. It can be found that the transition to accelerating penetra-
tion occurs at higher positions for higher evaporations rates for dif-
ferent geometries. Furthermore, for a given evaporation rate, the
transition position is higher for larger geometrical factors. Based
on such charts, the transition position can be readily determined
for analytical purposes, and for informing the design of porous
structures, such as chemical detection devices with controllable
Fig. 4. (a) The distribution of the penetration velocity (acceleration or deceleration) unde
the penetration velocity plotted versus evaporation rate for different geometrical shape
reaction times applied at different temperatures [5]. It should be
mentioned that tuning the penetration velocity, especially the
acceleration, necessitates the informed control of sample proper-
ties and environmental conditions.
4.2. Evaporation limited capillary penetration

As previously mentioned, the evaporation effect acts as a vis-
cous resistance to the liquid front moving in the penetration pro-
cess [40,47]. When the evaporation-induced viscous pressure loss
equals the capillary pressure (viz., Pc ¼ Pm), the velocity of liquid
front reduces to zero, and the penetration will be restricted to a
limited region with a critical length (see Fig. 2). By considering
the critical condition of Pc ¼ Pm, the critical length lc can be
obtained as

lc
l0
þ 1
a� 1

� �2

ln 1þ lc
l0
ða� 1Þ

� �
� lc
2l0

2
a� 1

þ lc
l0

� �
¼ _mc

eu

_me
; ð11Þ

where _mc
eu ¼ Pc � kqH=ll20 is the critical evaporation rate for a uni-

form porous plate that allows penetration through the entire mate-
rial. This value has been used as a scaling parameter to normalize
the evaporation rate in Eq. (9). Furthermore, if we focus on a
special circumstance of the critical length exactly equaling to the
length of the plate, i.e., lc ¼ l0, the critical evaporation rate _mc

e

can be given as

_mc
e

_mc
eu

¼ 2ð1� aÞ2
1� a2 þ 2a2 lna

: ð12Þ

This equation reveals the relation between _mc
e and _mc

eu. The
right hand side will reduce to 1 while a ¼ 1, meaning _mc

e ¼ _mc
eu

for the case of a uniform porous plate.
According to Eq. (11), the critical length of the evaporation-

limited penetration region lc=l0 is plotted as a function of the evap-
oration rate _me= _mc

eu and geometrical factor a in Fig. 5a. It is clear
that when evaporation rate is smaller than a critical value, i.e.,
r different evaporation conditions and geometrical shapes; (b) Transition position of
s.



Fig. 5. (a) Normalized critical penetration distance versus normalized evaporation rate for asymmetric capillary penetration with different geometrical shapes; (b)
Normalized critical evaporation rate as a function of geometrical factor.
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_me 6 _mc
e, the critical length remains the length of the sample,

which means the liquid can penetrate the whole region. However,
the critical length decreases from l0 and approaches 0 when
_me > _mc

e. Note that there is a boundary at the top surface in
Fig. 5a, as shown by a blue line, which delineates lc ¼ l0 at critical
conditions of evaporation rate and geometrical factor, and can be
quantitatively described by Eq. (12) as shown in Fig. 5b. Fig. 5 indi-
cates that the limited penetration region can be tuned by control-
ling the evaporation rate and geometry of the sample. A tunable
penetration region allows for optimized distribution of chemical
reagents in a specific test zone in detection devices [34].

It should be noted that all the results are given in a dimension-
less form in the above analysis. Particularly, the evaporation rate
_me is normalized by a critical value _mc

e (or _mc
eu). According to the

expression of _mc
e (i.e., Eq. (12)), we know that it depends on the

properties of the liquid and the porous medium, and the geometri-
cal parameters of the porous media. Moreover, the physical prop-
erties of a liquid (i.e., surface tension, density and viscosity) are
influenced by environmental conditions, including temperature
and vapor pressure [40,44,47]. In order to investigate the effects
of these factors on the critical rate of evaporation, variations of
the critical evaporation rate against the length of the sample and
temperature are plotted in Fig. 6a and b, respectively. Two types
of commonly used liquid, i.e., water and hydrofluoroether (HFE-
7500), are considered. For each case, three different geometries,
a = 0.5, 1, and 1.5, are taken into account. The layer thickness is
set to be H = 0.1 mm. Other parameters of the porous medium,
water and HEF-7500 under different temperatures are retrieved
from Fries et al. [40]. Vargaftik et al. [49] and Rausch et al. [50],
respectively. Fig. 6 represents the linear relation between critical
c
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Fig. 6. Variation of the critical evaporation rate against (a) length of the sample at T = 20
evaporation rate and the sample size and temperature. These find-
ings demonstrate how liquid penetration can be tuned by changing
ambient conditions, adopting different liquids and controlling por-
ous media geometries.

4.3. Geometry-based compensation of penetration time

In the above analyses, we have found that the penetration pro-
cess is affected by not only liquid evaporation but also the geome-
try of the porous media. On one hand, the penetration process will
be retarded by evaporation, on the other hand, changing the
geometrical shape of the porous sample affects penetration in both
accelerating and decelerating regimes. It indicates that the
evaporation-retarded penetration can be compensated by choosing
a proper geometrical shape of the porous sample. In other words,
we can tune the capillary penetration in porous media by combin-
ing the geometry and evaporation effects. This inspires us to design
suitable porous structures for particular using environment.

For capillary penetration in porous media, the total penetration
time is an important parameter attracting significant attention in
industrial applications such as chemical analysis [37,38]. As shown
in Fig. 7a, the normalized critical time for penetration in the whole
region (i.e., tc=t0, where t0 is the critical penetration time of a uni-
form porous plate without evaporation) is plotted as function of
normalized evaporation rate for samples with different geometries.
It is clear that the penetration time increases with increasing evap-
oration rate for each geometrical factor, and approaches infinity
when the evaporation rate tends to a critical value. After exceeding
this critical evaporation rate, the penetration will be restricted to a
limited region within the sample. The dotted line in Fig. 7a, which
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extends horizontally at tc=t0 ¼ 1, reveals that tailoring the
geometrical shape of a porous sample can compensate for the
evaporation-retarded penetration.

To further understand this compensation mechanism, as shown
in Fig. 7b, we plot the distribution of penetration time in a phase
diagram in the space of _me= _mc

eu and a. It can be seen that there
are three regions in two main parts, i.e., the complete penetration
part (i.e., lc ¼ l0, the liquid can penetrate into the whole sample,
including the shaded blue and cyan regions) and the incomplete
penetration part (i.e., lc < l0, the liquid is limited to a finite region,
see the shaded yellow region), with a purple solid line boundary,
which indicates the limiting condition of complete penetration
with infinite time (i.e., tc ¼ 1). In the complete penetration region,
there is a boundary between the blue and cyan regions shown as a
green solid line, which is transplanted from the dotted line in
Fig. 7a, and gives the consistence condition for the geometrical
shape compensating the evaporation-retarded penetration time
to be a constant (i.e., tc ¼ t0). In the blue region, the total penetra-
tion time tc under the combination of evaporation rate and geo-
metrical factor is smaller than the critical value t0 (i.e., tc < t0).
Thus, this region can be considered as an overcompensated region.
In contrast, under-compensation is found in the cyan region, that
is, the total penetration time is larger than the critical value, i.e.,
tc > t0.

In practical applications, the reference state for compensation
may not always be the uniform porous plate. For any given refer-
ence state, the consistence condition of a and _me= _mc

eu can be
obtained by moving the dotted line in Fig. 7a up (for the case of
a > 1) or down (for a < 1). Accordingly, the position of the green
solid line in the phase diagram in Fig. 7b also needs to be adjusted
corresponding to the dotted line. This compensation mechanism
can be used as a basis to precisely control penetration processes
in chemical analytical devices, with implications towards improv-
ing their accuracy [34,48].
5. Compensation mechanism in 3D porous structures

In the previous sections, by applying the proposed theoretical
model, the combined effects of geometry and evaporation on the
capillary penetration in 2D porous structures are investigated
systematically. Nevertheless, capillary flow processes are also com-
monly found in 3D porous structures, such as capillary evapora-
tors, drug delivery systems, and construction and geotechnical
structures [10,11,45], and most of the 3D porous structures have
non-uniform cross sections [27]. To fill this gap, we extend the
proposed 2D theoretical model to cover 3D porous structures and
investigate the interplay of sample geometry and liquid evapora-
tion during the capillary flow process.

To investigate the capillary flow process in 3D structures, we
choose a hollow circular frustum cone (see Fig. 8a) and a hollow
square frustum pyramid (see Fig. 8b) as two representative 3D por-
ous structures. All the geometrical parameters of these structures
are discussed in Appendix A. Two special cases of the geometrical
shapes, i.e., uniform thickness and variable thickness, are consid-
ered in the following. According to the extended theoretical
models, i.e., Eqs. (A.5) and (A.6), the capillary penetration process
in 3D porous structures can be predicted for samples with different
geometrical shapes and under different evaporation conditions, see
Appendix A for the details.

As we have discussed in Section 4.3, the evaporation-retarded
penetration can be compensated by tailoring geometrical shape
of the porous sample. For the 2D porous sample, only the geomet-
ric factor is tunable, but for the 3D porous samples, one more
parameter (i.e., the relative layer thickness P, its definition given
in Appendix A) can be introduced to increase the design flexibility.
Here we also choose the critical penetration time for the whole
region (tc) as the object variable of the compensation, and the cor-
responding reference is the critical penetration time of a uniform
porous cylinder without evaporation (t0).

First, we focus on the 3D hollow porous structure with uniform
thickness. As shown in Fig. 9, the normalized critical penetration
time (i.e., tc=t0) is plotted as a function of evaporation rate for por-
ous samples with different geometrical shapes (i.e., a = 0, 0.1, 0.25,
0.5, 1.0 and 2.0). For each geometry, three samples with different
relative thicknesses, i.e., P = 0.01 �a, 0.5 �a and �a, are considered.
When the relative layer thickness approaches zero (e.g., P = 0.01
�a), the results of 3D cases are consistent with the 2D results (as
shown by symbols). Similar to the 2D cases (see Fig. 7(a)), the
penetration time increases with increasing evaporation rate for
each sample with different geometric factors and relative thick-
nesses. Additionally, the penetration time approaches infinity
when the evaporation rate tends to a critical value, and the limited
penetration occurs when the evaporation rate exceeds the critical
value.

For the samples with a given geometric factor, the relation
between critical penetration time and evaporation rate is depen-
dent upon the relative layer thickness of the sample. However, it
can be interestingly found that this dependence vanishes at the
state of tc=t0 ¼ 1, which reveals that the consistence condition of
compensation for the evaporation-retarded penetration does not
depend on the relative layer thickness. By extracting the
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intersection points on the horizontal dotted line in Fig. 9, the com-
pensation condition for 3D porous structures can be plotted in
Fig. 10(a). This condition corresponds to the phase boundary line
in left side of Fig. 7(b) for the 2D compensation. Similar to the
2D case, for a given 3D porous structure, when the condition of
evaporation and geometric shape situate in the overcompensated
region, which is located in the left side of the red line, the total
penetration time tc is smaller than the critical value t0 (i.e.,
tc < t0). On the contrary, larger total penetration time (i.e.,
tc > t0) can be found in the under-compensation region which is
located in the right side of the red line.
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critical evaporation rate for the complete penetration in 3D porous sample with differe
function of geometrical factor (lines). The critical condition for the complete penetratio
When the evaporation rate is larger enough, the liquid penetra-
tion is limited in a finite region. By employing the equilibrium
condition of Pc ¼ Pm, the critical condition for the complete pene-
tration (i.e., the liquid can penetrate into the whole sample exactly)
can be obtained as

_mc
eu

_mc
e
¼ a2 �P2=4

ð1� aÞ2
ln

a�P=2
1�P=2

� �
� 1
2
þ 1þP=2

1� a
: ð13Þ

It can be found that, when the relative layer thickness P ! 0,
Eq. (13) reduces to Eq. (12), which is governing the critical condi-
tion for the complete penetration in 2D porous samples. By apply-
ing Eq. (13), the normalized critical evaporation rate for the
complete penetration in 3D porous samples can be plot as a func-
tion of the geometrical factor in Fig. 10(b). Five cases with different
relative thicknesses, i.e., P = 0.01, 0.25, 0.50, 0.75 and 1.00, are
considered here, and the case with P = 0.01 is consistence with
the 2D results (as shown by symbols). Due to the relative thickness
confined by P 6 �a, the critical condition between the geometrical
factor and evaporation rate is truncated at a ¼ P for each case.
Additionally, for a given geometrical factor, larger relative thick-
ness corresponds to smaller critical evaporation rate, meaning
the complete penetration is easier to attain for the sample with
larger relative thickness.

All the discussions presented above are focusing on the 3D hol-
low porous structures with uniform layer thickness. However, we
cannot access the properties of solid cylindrical porous sample
by changing the geometrical parameters, even if the inner radial
reduces to zero. For this reason, we consider the liquid penetration
process in 3D hollow porous structures with variable layer
thickness. With the proposed model, i.e., Eq. (A.6), the variation
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of the liquid front with penetration time can be calculated for 3D
hollow porous structures with different geometrical shapes under
different evaporation conditions.

When the evaporation is negligible, i.e., _me ¼ 0, by integrating
Eq. (A.6), the relation between penetration distance and penetra-
tion time can be obtained explicitly as �h2 � 2=3 � ð1� aÞ�h3 ¼ �t with
�t ¼ t=t0. For the complete penetration, i.e., �h ¼ 1, the critical condi-
tion can be further simplified as 1=3þ 2a=3 ¼ �tc , where �tc ¼ tc=t0 is
the normalized critical penetration time. The critical penetration
time �tc is plotted as a function of the geometrical factor a in
Fig. 11(a) with semi-log coordinates. The asymmetric capillary
flow is clearly found when a varying from 0.1 to 10. Moreover,
the linear variation of �tc with respect to a is also shown in the
insert of Fig. 11(a) with initial value of �tc ¼ 1=3 when a ¼ 0.

When the evaporation is non-negligible, as we have discussed
before, the evaporation-retarded penetration can be compensated
by changing the geometrical shape of the porous sample. For the
3D hollow porous structures with variable layer thickness, the nor-
malized critical penetration time can be plotted as a function of
evaporation rate for samples with different geometrical shapes
(i.e., a = 0.5, 1.0 and 2.0), as shown in Fig. 11(b). Three samples
with different relative thicknesses, i.e., P = 0.01 �a, 0.5 �a and �a,
are considered for each geometry. It is clear that the relative thick-
ness has no effect on the critical time when the evaporation is neg-
ligible (i.e., _me ¼ 0). With the evaporation rate increasing, the
significance of the effect of relative thickness on the critical time
increases. Following the horizontal dotted line in Fig. 11(b), one
can find that the consistence condition of compensation is depen-
dent on the relative layer thickness, which is different from the
results of 3D structures with uniform layer thickness. Additionally,
the critical condition of complete penetration also depends on the
relative thickness.

The findings presented in this section provide us clearer under-
standing on the capillary flow in 3D porous structures, especially
the compensation mechanism. By means of these findings, the
design of capillary flow devices can be improved to facilitate the
applications in a wide range, especially for the devices with high
precision and sensitivity requirements.
6. Conclusion

In summary, a general framework has been developed to quan-
titatively investigate the significant effects of sample geometry and
the liquid evaporation on capillary penetration processes in both
2D and 3D porous media with non-uniform cross sections. By com-
bining the effects of geometry and evaporation, the velocity and
extent of capillary penetration can be tuned with implications for
diverse practical applications. Numerical simulations have been
performed to support the developed theoretical model for 2D
porous media. Good agreement is obtained for the base angles
between 45� and 135�.

For 2D porous media, the velocity of capillary penetration is
found to be sensitive to the geometry of the porous sample, and
it is found to transition from a decreasing to an increasing trend
during the penetration process for a given geometry. Moreover,
the distribution of penetration velocity can be modified by evapo-
ration effects. The transition position has been predicted quantita-
tively as a function of the evaporation rate and the geometrical
factor. Furthermore, a critical value of the evaporation was found
to exist, above which liquid penetration is restricted to a limited
region with a predictable boundary. The critical length of the
limited penetration region depends on the evaporation rate and
geometrical factor. It is particularly interesting to note that
evaporation-retarded penetration can be compensated by choosing
an appropriate sample geometry, and the consistence condition is
given theoretically.

The capillary penetration in 3D porous structures was investi-
gated. It is found that the relative layer thickness has a significant
effect on the penetration process and the critical condition of the
complete penetration in 3D structures for both cases with uniform
and variable thickness. Another interesting finding is that the com-
pensation condition for the evaporation-retarded penetration in
3D porous structures with uniform thickness does not depend on
the layer thickness, but such dependence is found for porous struc-
tures with variable thickness.

The present analysis provides a useful framework to investigate
the underlying mechanisms of penetration processes by combining
geometry and evaporation effects. Insights gained from this work
warrant new designs of more complex and actual porous architec-
tures to achieve active control of the capillary penetration pro-
cesses for a wide range of practical applications. Furthermore, it
is worth mentioning that the present framework to consider geo-
metrical factors can be applied to alternative shapes, other than
the trapezoid and hollow circular/square frustum we discussed
here.
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Appendix A. Theoretical model for capillary flow in 3D
structures

For the 3D porous structures shown in Fig. 8, when the porous
samples attach with liquid reservoir, the liquid will transfer to the
other end from the reservoir driven by capillary pressure. For the
hollow circular frustum (see Fig. 8a), it is clear that the structure
is axisymmetric. Its intermediate cross-section, i.e., the plane of
symmetry, is an isosceles trapezoid. According to the symmetry,
half of the intermediate cross-section, i.e., O0O1Q1Q0, can be illus-
trated in Fig. 8c. For the hollow square frustum (see Fig. 8b), the
axisymmetry is not valid, but half of symmetrical plane
O0O1Q1Q0 can also be chose to characterize the basic geometric
features of the whole structure. Similar to the analysis of 2D cases
in Section 2, half of the width and the porous layer thickness are
assumed to vary with the position as

RðzÞ ¼ R0 1� z
h0

ð1� aRÞ
� �

; ðA:1Þ

and

TðzÞ ¼ T0 1� z
h0

ð1� aTÞ
� �

; ðA:2Þ

where R0 and T0 are the half width and layer thickness at the posi-
tion in contact with the reservoir, respectively, h0 is the length of
the central axis of the hollow circular frustum cone and the hollow
square frustum pyramid, z is the local position in the penetrated
region along the central axis, and aR and aT are the geometric
parameters with respect to the half width and layer thickness,
respectively. Similar to the 2D trapezoidal porous plate, the geo-
metric feature of these 3D porous sample can be characterized by
the geometric parameters aR and aT .

Similar to the analysis of 2D trapezoidal structures, here we
adopt the 1D assumption of flat liquid front (see Fig. 8c) in the the-
oretical model to investigate the basic characteristics of capillary
flow in the 3D structures. In addition, when the liquid penetrates
through these hollow structures, evaporation may take place at
both the inner and outer surfaces of the penetrated region. To
simplify, only the evaporation at the outer surface is considered,
as shown in Fig. 8c.

For the hollow circular frustum (see Fig. 8(a)), the mass conser-
vation under the evaporation condition can be expressed as

_z � p½R2ðzÞ � ðRðzÞ � TðzÞÞ2�/ ¼ _h � p½R2ðhÞ

� ðRðhÞ � TðhÞÞ2�/þ _me

q

� p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh� zÞ2 þ ½RðzÞ � RðhÞ�2

q
� ½RðzÞ þ RðhÞ�; ðA:3Þ

where z and h indicate the local position in the penetrated region
and the liquid front position, respectively, as shown in Fig. 8(c).

Technically, one can obtain the fully control equation for the
moving liquid front position by combining Eqs. (5) and (A.3). How-
ever, it should be noted that the pressure gradient, which is used to
determine the flow rate in Eq. (5), is depending on the flow direc-
tion. Here, we use the inner boundary of the porous layer, i.e., P0P1

in Fig. 8c, as the flow direction. Introducing the slant angle c, Eq. (5)
can be rewritten, and the control equation can be obtained by com-
bining with Eq. (A.3) as
P0
c ¼

/l
k

Z h

0

_zdz

¼ /l
k

Z h

0

2RðhÞTðhÞ � TðhÞ2
2RðzÞTðzÞ � TðzÞ2

� _hdz

þ /l
k

� _me

q/

Z h

0

½RðzÞ þ RðhÞ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh� zÞ2 þ ½RðzÞ � RðhÞ�2

q
2RðzÞTðzÞ � TðzÞ2

dz:

ðA:4Þ

where P0
c ¼ Pc � ðsin cÞ2, in which Pc is the capillary force with the

same expression as 2D case as Pc ¼ 2r cos hs=Reff .
By substituting the expressions of RðzÞ, TðzÞ, RðhÞ and TðhÞ,

through Eqs. (A.1) and (A.2), into Eq. (A.4), the penetration dis-
tance, i.e., the liquid front position, can be calculated as a function
of penetration time. It should be noted that the mass conservation
of the hollow square frustum (see Fig. 8(b)) has a similar expres-
sion to Eq. (A.3) for the hollow circular frustum. We can further
confirm that Eq. (A.4) is also valid for the hollow square frustum.

Noted that there are two integral functions in Eq. (A.4), its expli-
cit expression is not easy to obtain for general cases. Here we focus
on two special cases, i.e., uniform thickness and variable thickness,
to derive explicit expressions of the control equation. When the 3D
hollow porous structure has a uniform thickness, i.e., TðzÞ ¼ T0, the
geometrical parameters can be set to aR ¼ a and aT ¼ 1. Following
these conditions, the control equation can be obtained as

Pc ¼ /ll20
k

� 1�P=2� ð1� aÞ�h
1� a

ln
1�P=2

1�P=2� ð1� aÞ�h

" #
� d

�h
dt

þ l _mel
2
0

2qkT 0
0

� ½1� ð1� aÞ�h�2 �P2=4

ð1� aÞ2
ln

1�P=2� ð1� aÞ�h
1�P=2

" #(

�
�h2

2
þ ð1þP=2Þ�h

1� a

)
; ðA:5Þ

where l0 is the distance of the sample along the flow direction and
can be related to the axial length h0 via h0=l0 ¼ sin c. Here, �h ¼ h=h0

is the projected length of the penetrated region,

T 0
0 ¼ T0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1� aÞ2=H2

q
is the effective thickness of the porous

layer at the bottom surface, and P ¼ T0=R0 is the relative thickness
with respect to the half width. Following the flat front assumption,
one can find that�l ¼ l=l0 ¼ �h, where l is the length of the penetrated
region along the flow direction.

When the thickness of the porous layer is much smaller than
the width of the sample, i.e., P ! 0, hollow square frustum pyra-
mid can be unfolded as four trapezoids. Consequently, Eq. (A.5)
reduces to Eq. (6) by replacing �h by �l. Furthermore, hollow circular
frustum cone can be unfolded as a sector ring when P ! 0. Hence
Eq. (A.5) can reduce to the theoretical model for radial penetration
in our previous work [47], by replacing �h by �r through the relation
�r ¼ 1� �h � ð1� aÞ.

For the special case of variable thickness, we choose the most
simple case, i.e., aR ¼ aT ¼ a, the control equation can be derived as

Pc ¼ /ll20
k

� ½1� ð1� aÞ�h��h � d
�h
dt

þ l _mel
2
0

2qkT 0
0

�
�h2

1�P=2
: ðA:6Þ

For this case, when P ¼ 1, the hollow structure becomes solid.
Furthermore, when a ¼ 1, Eq. (A.6) reduces to the classical 1D
model given by Fries et al. [40].

Here we focus on the hollow porous sample with uniform layer
thickness as an example. As shown in Fig. A.1, the normalized pen-
etration distances are plotted as a function of normalized penetra-
tion time for two sets of geometric parameters, i.e., a ¼ 2:0 and
a ¼ 0:5. For each geometry, three samples with different relative
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Fig. A.1. Normalized penetration distance versus penetration time for capillary penetration in hollow porous sample (lines) with: (a) a = 2.0 (under evaporation rates _me= _mc
e

= 0.0 and 1.0) and (b) a = 0.5 ( _me= _mc
e = 0.0, 0.3 and 1.0) with relative layer thicknesses P ¼ 0:01�a, 0:5�a and �a. The results of 2D model prediction (symbols) are also included

for the purpose of comparison.
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layer thicknesses, i.e., P ¼ 0:01�a, 0:5�a and �a (where �a ¼ a when
a < 1 and �a ¼ 1 when aP 1), are considered, as shown by solid
lines with different colors. For the purpose of comparison, the pre-
diction of 2D model (Eq. (6)) are also plotted by symbols and def-
initely consist with the 3D case of P ¼ 0:01�a.

It can be seen from Fig. A.1 that, for both two sets of geometries,
the evaporation of liquid weakens the penetration process gener-
ally, i.e., higher evaporation rate leads to slower flow velocity for
all the three samples with different relative thicknesses. However,
for a given evaporation condition, the effect of relative layer thick-
ness on the penetration depends on the geometric shape of the
sample. Specifically, for the case of a ¼ 2:0 under two evaporation
rates (i.e., _me= _mc

e = 0 and 1.0), as shown in Fig. A1(a), slower flow
velocity can be found for the sample with larger relative thickness.
However, for the case of a ¼ 0:5, it is interesting to find that there
is a transition of the effect of relative layer thickness on the pene-
tration from negative to positive by varying the evaporation rates,
see Fig. A1(b). When _me= _mc

e = 0, slower flow velocities are found for
the thinner samples. On the contrary, faster flow velocities are
obtained in the thinner samples when _me= _mc

e = 1. The transition
approximately occurrs at _me= _mc

e = 0.3, and the flow velocity is
independent on the relative layer thickness under this special
evaporation condition. This interesting transition phenomenon
has significant effects on the compensation mechanism in 3D
structures.
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