Paper accepted (Phys Rev Fluids) on flow in hierarchical porous media

Suo, S., Liu, M. and Gan, Y. (2020) Fingering patterns in hierarchical porous media. Physical Review Fluids, in press.

Three main modes demonstrating different flow patterns due to the existence of second order porous structures.

Abstract: Porous media with hierarchical structures are commonly encountered in both natural and synthetic materials, e.g., fractured rock formations, porous electrodes and fibrous materials, which generally consist of two or more distinguishable levels of pore structure with different characteristic lengths. The multiphase flow behaviours in hierarchical porous media have remained elusive. In this study, we investigate the influences of hierarchical structures in porous media on the dynamics of immiscible fingering during fluid-fluid displacement. Divided by the breakthrough, such displacement process includes pre- and post-breakthrough stages during which the fingering evolution is dominated by viscous and capillary effects, respectively. Through conducting a series of numerical simulations, we found that the immiscible fingering can be suppressed due to the existence of secondary porous structures. To characterise the fingering dynamics in hierarchical porous media, a phase diagram, which describes the switch among the three fingering modes (the suppressing, crossover and dendrite mode), is constructed by introducing a scaling parameter, i.e., the ratio of time scales considering the combined effect of characteristic pore sizes and wettability. The findings presented in this work provide a basis for further research on the application of hierarchical porous media for controlling immiscible fingerings.

Full paper can be downloaded via Publications page, when available.





Leave a Reply

Your email address will not be published. Required fields are marked *