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ABSTRACT: The capillary penetration of fluids in thin
porous layers is of fundamental interest in nature and various
industrial applications. When capillary flows occur in porous
media, the extent of penetration is known to increase with the
square root of time following the Lucas-Washburn law. In
practice, volatile liquid evaporates at the surface of porous
media, which restricts penetration to a limited region. In this
work, on the basis of Darcy’s law and mass conservation, a
general theoretical model is developed for the evaporation-
limited radial capillary penetration in porous media. The
presented model predicts that evaporation decreases the rate of
fluid penetration and limits it to a critical radius. Furthermore,
we construct a unified phase diagram that describes the limited
penetration in an annular porous medium, in which the boundaries of outward and inward liquid are predicted quantitatively. It is
expected that the proposed theoretical model will advance the understanding of penetration dynamics in porous media and
facilitate the design of engineered porous architectures.

1. INTRODUCTION

Capillary penetration of fluid in porous media is an important
phenomenon in a broad range of applications including
microfluidic devices,1,2 paper-based fuel cells,3,4 textile en-
gineering,5,6 oil recovery,7 diagnostic testing,8 inkjet printing,9

and flow in biological tissues.10 Furthermore, dynamic wicking
can also be employed to determine the effective properties
(e.g., the pore size distribution and porosity) of porous
media.11−13 Capillary penetration in porous media shares a
similar dynamic mechanism with capillary flow in hollow tubes.
The capillary flow of liquids in a tube or a porous medium is
driven by negative capillary pressure, and porous media can be
simplified as hollow tubes with an effective capillary radius.
The dynamics of capillary flow in a tube was described by

Lucas14 and Washburn15 a century ago. They suggested that the
distance of liquid movement L and the penetration time t
satisfy a diffusion relationship as L = (Dt)1/2, where D is the
diffusion coefficient depending on the tube size and liquid
properties. This classical result is valid for both horizontal and
vertical capillary flow (ignoring the effect of gravity). The
diffusion correlation between capillary penetration distance and
time in porous media has also been found to follow the Lucas−
Washburn law for both unidirectional16−18 and radial19−22

penetration, including the unidirectional capillary flow in
porous media with nonuniform cross section.23−27

In practical applications, volatile liquid evaporates from the
surface of porous media during penetration and as a result of
this continuous evaporation, the advance rate of liquid fronts is
considerably diminished.28 Thus, the evaporation effect will
induce a limited penetration process whereby liquid penetration

is restricted to a limited region.28−30 Similar behavior has also
been observed for vertically oriented capillary penetration with
non-negligible gravitational effects.31−33 In order to quantita-
tively investigate the evaporation effect in unidirectional
capillary penetration, Fries et al.28 experimentally investigated
the wicking of liquids into a metallic weave. The Lucas−
Washburn law was employed and enhanced to model the
dynamical wicking process by incorporating the effects of
evaporation and gravity. They found that the evaporation of
liquid at the surface has a significant effect on capillary
penetration, and the penetration velocity and the maximum
height are controlled by the evaporation rate. Recently, the
evaporation effect has also attracted much interest in paper-
based sensors and diagnostics,34,35 in which evaporation may
restrict the penetration dynamics of the detecting reagent.
The studies discussed above focused on evaporation during

unidirectional penetration, but less work has dealt such effects
during radial penetration. For radial fluid penetration, which is
widely applied in printing,36 paper-based microfluidics and
pumps,37,38 and textile industries,39 the relationship between
penetration distance and nondimensional time differs to that of
the unidirectional case.22 An improved physical understanding
of radial capillary penetration with evaporation will help
advance the understanding penetration dynamics toward the
design of porous architectures for engineering applications.
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This Article presents the effects of evaporation on radial
capillary penetration. On the basis of Darcy’s law and the
principle of mass conservation, a general theoretical model for
evaporation-limited radial capillary penetration in homoge-
neous porous media is constructed. For both outward and
inward radial transport, the critical radii of the limited
penetration regions are determined theoretically as a function
of the evaporation rate. Moreover, the limited penetration in an
annular porous medium is described by a unified phase diagram
to quantitatively predict the boundaries of the liquid
distribution regions.

2. THEORETICAL MODEL
The radial capillary penetration of liquids into porous media is driven
by the capillary force along the meniscus at the edge of the spreading
spot. The process is usually described by the theoretical model given
by the Lucas−Washburn law.39 Here we consider a two-dimensional
radial penetration of liquid into a thin porous layer with thickness
much smaller than its radial dimension such that it can be treated as a
planar problem in polar coordinates. If the penetration takes place
from an unlimited liquid reservoir placed at the middle of the plate, the
liquid flow outward along the radial direction, is termed “outward
transport”; see Figure 1a. In contrast, as shown in Figure 1b, the

inward radial flow from an unlimited reservoir placed around the
perimeter of a circular plate is termed “inward transport”. Both
outward and inward fluid penetrations are common in paper and
textile industries.20−22 Recently, they are also widely applied in paper-
based microfluidics and pumps.37,38

Consider the evaporation weakened radial capillary penetration, as
shown in Figure 1, the evaporation rate ṁe, which is the mass of
evaporated liquid per area and time [kg/m2·s], is used to characterize
the evaporation of liquid. On the basis of the assumption that the
evaporation rate is constant and uniform in the penetration region, the
total mass flow rate due to evaporation is

π̇ = ̇ · −M m R R( )e e
2

0
2 (1)

where R and R0 are the radii of the wetted region and the liquid
reservoir, respectively. Note that here we assume that evaporation only
takes place at the top surface of the porous layer with area π(R2 − R0

2).
The evaporation area will be doubled if the bottom surface is also
subjected to evaporation.

For a thin porous layer with thickness H and porosity ϕ, the
conservation of mass during the penetration process for both inward
and outward cases can be expressed as

π ϕ π ϕ
ρ

π· ̇ = · ̇ +
̇

· −rH r RH R
m

R r2 2 ( )e 2 2

(2)

where r is the local radial position, while r ̇ and Ṙ are the velocities of
the local position and the liquid front, respectively. Furthermore,
Darcy’s law for the liquid flow can be expressed as

μ
= − ∂

∂
Q
A

K P
r (3)

where Q is the flux of the liquid flow through a cylindrical surface with
area A = 2πrH, K is the permeability of the porous medium, μ is the
viscosity of the liquid, and P is the pressure of liquid. For radial
penetration, liquid flow flux can be related to the local liquid velocity
as

ϕ= ̇ ̇ =Q rA r
r
t

,
d
d (4)

Integration of eq 3 and combining with eqs 2 and 4 yield
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where the second term of the right-hand side refers to the viscous
pressure loss Pm due to the evaporation effect and represents the
resistance in the penetration process and Pc is the capillary pressure.
The capillary pressure also depends on the surface tension, σ, the
contact angle formed between solid and liquid, θs, and the effective
pore radius of the porous medium, Reff, with the form

σ θ
=P

R
2 cos

c
s

eff (6)

Figure 1. Schematic illustration of radial capillary penetration
incorporating evaporation for (a) outward and (b) inward cases.

Figure 2. Normalized radii versus normalized time for (a) outward and (b) inward radial penetration of liquid under different evaporation rates.
Dashed lines indicate critical penetration radii.
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By substitution of the above equation into eq 5, the penetration radius
can be solved as a function of time for both outward (see Figure 1a, R
> R0) and inward (see Figure 1b, R < R0) cases.
For the limiting case of negligible evaporation, i.e., ṁe = 0, eq 5

reduces to the classical radial penetration model.39 In eq 5, a time
scale, t0 = μϕR0

2/2KPc, can be defined to normalize the penetration
time.
As mentioned above, the evaporation effect acts as a resistance to

the penetration process. Consequently, the liquid penetration will be
restricted to a limited region with a critical radius. From eq 5, we find
that the speed of liquid penetration reduces to zero (i.e., the
penetration process is stopped) when the capillary pressure equals the
evaporation-induced viscous pressure loss (i.e., Pc = Pm). Thus, the
critical radius Rc depends on the evaporation rate, and can be given as
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where ṁe
c is a critical evaporation rate that allows inward penetrating

liquid to reach the center of the circular porous plate. By substituting
Rc → 0 into the equilibrium condition Pc = Pm, we obtain the value as
ṁe

c = 4Pc(kρH/μR0
2). It is clear that this critical evaporation rate

depends on the geometrical and physical parameters of the porous
medium and the liquid, and can be controlled by changing these
system parameters.

3. RESULTS AND DISCUSSION
3.1. Limited Outward and Inward Radial Penetration.

We first consider the evaporation effect on the radial capillary
penetration in a thin porous layer. According to the developed
model of eq 5, combining with the two defined parameters t0
and ṁe

c, the normalized penetration radius of the thin porous
layer, R/R0, can be plotted versus the normalized penetration
time, t/t0, for outward and inward radial penetration (shown in
Figure 2 for different evaporation rates).
For outward penetration, as shown in Figure 2a, R/R0

increases with time and the speed of penetration is smaller
for larger values of ṁe/ṁe

c. More interestingly, the outward
penetration radius approaches an asymptote (i.e., the critical R/
R0) when the time is sufficiently long and ṁe/ṁe

c ≠ 0. This
phenomenon is the above-mentioned evaporation-limited radial
penetration. It is clear that the critical radius of the limited
penetration region decreases with increasing evaporation rate.
Figure 2b shows the evaporation effect for the case of inward

penetration, where R/R0 is plotted as a function of t/t0 for five
cases (i.e., ṁe/ṁe

c = 0, 0.5, 1.0, 1.5 and 3.0). It can be seen that
inward penetration differs fundamentally from the outward case
in that there exists a critical state between the limited and
unlimited penetration under the condition of ṁe = ṁe

c. Limited
penetration occurs for an evaporation rate greater than the
critical value, i.e., ṁe ≥ ṁe

c, and the critical radius is larger for
lager evaporation rates. When ṁe ≤ ṁe

c, liquid penetrates into
the whole region, but the speed of penetration still depends on
the evaporation rate. From these two cases we find that the
evaporation of liquid has significant effect on the radial capillary
penetration.
According to the above analysis, the critical radius for

evaporation-limited penetration is dependent on the evapo-
ration rate. According to eq 7, the quantitative relationships
between Rc/R0 and ṁe/ṁe

c are plotted in Figure 3 with red and
blue solid lines for outward and inward penetration,
respectively. For outward penetration, the critical radius
monotonically decreases and approaches the radius of the
liquid reservoir, R0, with increasing of evaporation rates. For
inward penetration, the critical radius increases from zero to R0

when the evaporation rate ṁe is larger than the critical value ṁe
c.

When ṁe ≤ ṁe
c, the critical radius remains zero, which means

the liquid can penetrate the entire region. Figure 3 indicates
that the limited region of radial penetration can be controlled
by the evaporation rate.
In the above analysis, all the results are given in a

dimensionless form. In particular, the evaporation rate ṁe is
normalized by a critical value ṁe

c, which is governed by material
parameters and environmental conditions. The definition of the
critical evaporation rate can be rearranged as

σ θρ
μ

̇ =m
k

R
H

R
4 cos 2

e
c s

eff 0
2

(8)

The expression in eq 8 consists of three parts representing the
various influences on the critical evaporation rate. It is clear that
ṁe

c depends on not only the properties of the liquid (i.e., surface
tension, density and viscosity) and the porous medium (i.e.,
permeability and effective radius), but also the geometrical
parameters of the porous media. Furthermore, the physical
properties of liquid are affected by environmental conditions
such as temperature. It means that we can control the critical
evaporation rate (for instance, by changing the environmental
conditions) in order to further tune the liquid penetration
process.
In order to quantitatively investigate the factors affecting the

critical rate of evaporation, variation of the critical evaporation
rate versus the radius of the liquid reservoir is plotted in Figure
4, in which the reservoir size may represents droplet size in
inkjet printing or detected reagent container in microfluidics.
For comparison, two types of liquid (i.e., water and
hydrofluoroether, HFE-7500), which are common used in
industrial and natural applications and show significant
difference of properties, under three temperature conditions,
T = 20, 50, and 80 °C, are considered. The layer thickness is
chosen as H = 0.1 mm. The parameters of the porous medium
are obtained from Fries et al.,28 and the physical properties of
water and HFE-7500 at different temperatures are retrieved
from the results of Vargaftik et al.40 and Rausch et al.,41

respectively.
Figure 4 clearly shows that the critical evaporation rate

decreases as the radius of the liquid reservoir increases for both
liquids. For each liquid, higher temperatures lead to higher
critical evaporation rates for a given reservoir radius.

Figure 3. Normalized critical penetration radii versus normalized
evaporation rate for outward and inward radial penetration.
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Furthermore, by comparing the results of the two types of
liquid, it can also be found that the critical evaporation rate of
water is larger than that of HFE-7500 under the same
conditions. This indicates that the evaporation relies on the
penetrating liquid. Furthermore, the evaporation process will
also be affected by the ambient humidity. Therefore, one can
tune the liquid penetration by adopting different liquids and/or
changing ambient conditions.
3.2. Limited Penetration of an Annular Porous

Medium. The evaporation effect on both outward and inward
fluid penetration has been investigated and we have found that
there exists a critical radius depending on the evaporation rate
in evaporation-limited penetration. In some practical applica-
tions of paper-based microfluidics or pumps, annular devices
utilize outward and inward liquid penetrations simultane-
ously.37,38 The developed theoretical model can be applied to
this type of configuration with implications in the design of
microfluidic devices. Here, an annular porous medium with
outer radius RO and inner radius RI fed by a circular reservoir in
the inner boundary and ring reservoir at the outer boundary, as
shown in Figure 5a, is considered. The inner and outer
reservoirs contain the same liquid, which penetrates into the
dry region.
It is intuitively expected that the inner liquid will intersect

with the outer liquid at a certain position within the annular
porous medium by capillary penetration. However, if the

penetration process is subjected to evaporation, as discussed
above, the liquid penetration will be restricted to a limited
region for both inward and outward cases. According to the
equilibrium condition Pc = Pm, the critical radius of the outward
penetration from the inner circular reservoir and the critical
evaporation rate have the following relationship,

̃ − ̃ = − ̇ ̇R R m m( ) [1 2ln( )] 1 /c
O 2

c
O

e
c

e (9)

where R̃c
O = Rc

O/RI is the normalized outward critical radius and
ṁe

c = 4Pc(kρH/μRI
2) is the critical evaporation rate depending

on the properties of liquid and porous medium, the inner radius
and the thickness of the annular sample.
It is clear that the outward critical radius Rc

O is always larger
than the inner radius of the annular porous medium RI for any
evaporation rate. At the same time, the relationship between
the critical radius of the inward penetration from the outer ring
reservoir (i.e., the inner boundary of the outer liquid) and the
critical evaporation rate can be given as

α α̃ − ̃ = − ̇ ̇R R m m( ) [1 2ln( / )] /c
I 2

c
I 2

e
c

e (10)

where R̃c
I = Rc

I/RI is the normalized inward critical radius, with
Rc
I ≤ RO for any evaporation rate.
When the evaporation rate increases from zero to a

sufficiently large value, the inner and outer liquid regions
become separate. The critical state, at which the two regions
start separating, can be defined by a critical evaporation rate ṁe

s

and by Rc
O = Rc

I. Combining with eqs 9 and 10, we obtain

̇ = ̇ − ̃ − ̃m m R R/[1 ( ) (1 2ln )]e
s

e
c

c
s 2

c
s

(11)

where R̃c
s = Rs

c/RI is the normalized radius of the separated
position, which relates to the dimensionless geometric factor of
the annular porous layer, α = RO/RI, by

α α̃ = −R ( 1)/2lnc
s 2

(12)

When the evaporation rate satisfies ṁe ≤ ṁe
s, the intersected

boundary between the inner and the outer liquid can be
obtained by solving the following integral equation

∫ ∫μϕ μϕ
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Figure 4. Comparison of the critical evaporation rate against the radius
of the liquid reservoir for water and HFE-7500 under different
temperatures.

Figure 5. (a) Schematic illustration of an annular porous medium fed by inner and outer reservoirs. (b) Calculated phase diagram of evaporation
limited radial capillary penetration in an annular porous medium.
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Equation 13 can be simplified when the evaporation rate is
negligible. The corresponding explicit solution is

α α̃ = = −R R R/ ( 1)/2lns
0

s
0

I
2

(14)

It is interesting to note that Rc
s and Rs

0 are found to share the
same value, which depends only on the geometric parameters
of the annular porous medium. However, if two different types
of liquids are considered for the inner and outer reservoirs, a
difference between Rc

s and Rs
0 may be observed.

Based on the above analysis, the limited penetration in an
annular porous medium can be determined by two
dimensionless parameters (i.e., the normalized radius of the
annular, R/RI, and the normalized evaporation rate, ṁe/ṁe

c).
Therefore, it can be described by a unified phase diagram, as
shown in Figure 5b. It can be seen that the whole space is
divided into three regions separated by phase boundaries (solid
lines). The shaded blue and green regions describe those
penetrated by the inner and outer liquid, respectively. The solid
line between them shows the intersected boundary between the
inner and the outer liquid and governed by eq 13, with two end
points given by eqs 12 and 14. It worth noting that the abscissa
remains constant, which means that the intersection boundary
is not dependent on the evaporation rate. When the
evaporation rate is larger than the critical value ṁe

s given by
eq 11, there will be a dry region, as shown in yellow in Figure 5.
The boundaries of the inner and outer fluid regions are
governed by eqs 9 and 10, respectively.
Figure 5b clearly shows that evaporation limits penetration in

an annular porous medium. On the basis of this unified phase
diagram, we can control the liquid penetration process or
design the porous structure quantitatively. When the
evaporation rate is larger than the critical value ṁe

s there will
be a dry gap in the annular porous medium with thickness ΔRc
= Rc

I − Rc
O. In practical applications, the thickness of the dry

region is a usable design parameter. For a more intuitive
understanding, the normalized thickness of the dry region is
plotted as a function of the normalized evaporation rate in
Figure 6. It can be found that the thickness of this dry region
approaches the dimensions of the gap between the inner and
outer reservoirs as the evaporation rate tends to infinity.

It should be noted that in the phase diagram the evaporation
rate is normalized by the critical value. As discussed, the critical
evaporation rate is governed by material properties and ambient
conditions. The boundaries of the phase diagram will shift in
response to changes in fluid or ambient conditions. Thus, the
liquid distribution in the annular sample is tunable.

4. CONCLUSION
In this work, based on Darcy’s law and the principle of mass
conservation, a general framework has been developed to
quantitatively describe the evaporation effect on radial capillary
penetration. The proposed model shows that evaporation has
significant effects on radial capillary penetration in thin porous
layers.
For both outward and inward radial capillary penetration,

evaporation reduces the rate of liquid penetration. Further-
more, liquid penetration may be restricted to a limited region
with a critical radius, which depends on the evaporation rate
and the geometric parameters of the porous samples. For
inward fluid penetration a critical value of the evaporation rate
exists, above which limited penetration will occur. For
penetration in an annular porous medium, the obtained unified
phase diagram shows that the outer liquid intersects with the
inner liquid when the evaporation rate is smaller than a critical
value. Otherwise, a dry region exists between the outer and
inner liquid penetrated regions. The phase boundaries in this
diagram can be predicted theoretically.
This study provides a quantitative theoretical exploration of

the evaporation-limited radial penetration in thin layer porous
media. The present analysis provides a useful framework to
investigate the underlying mechanisms of limited capillary
penetration in environments with non-negligible evaporation,
and also warrants new designs of porous architectures to
optimize the capillary penetration processes for a wide range of
practical applications. It should be noted that the adopted
method can also be extended to the unidirectional penetration
in porous media exhibiting rectangular geometries.
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