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• Both SOFC and LIB have porous electrode structures 
• electrode structures approximated as binary mixture of spherical particles 
• Similar electrode structures enable to use the same computational methods

Background: Granular electrode structures 
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Modelling Li-ion batteries

percolation

granular packing resistor network

pore space modelling

active material carbon black
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Surface roughness vs fractality
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The Search for the Absolute by Rene Magritte
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Contact stiffness and electrical contact resistance



Rough surfaces: fractal dimension
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Contact stiffness and electrical resistance measurement
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(a) nano-indentation (b) ECR measurement
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Contact stiffness at rough surfaces

(a) nano-indentation
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• RMS roughness 
• RMS slope 
• Fractal dimension
Hertzian contact: a=1/3

Contact stiffness: 
correlation analysis
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(a) nano-indentation (b) ECR measurement

Contact stiffness and electrical contact resistance
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Contact stiffness and electrical contact resistance

Zhai, C., Hanaor, D., Proust, G., Brassart, L., Gan, Y. (2016) Interfacial 
electro-mechanical behaviour at rough surfaces. Extreme Mechanics Letters. 
9: 422-429. !16
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Measurement data

Surface morphological data: six types of surfaces (polished, 
SMAT, shot-peening) with distinct combination of roughness 
measures. Each sample with multiple 1mm x 1mm scans.
Contact stiffness measurement, six types of surfaces tested 
across a wide range of compressive stress (~five magnitudes).
Electrical contact resistance measurement, three types of 
samples tested across three magnitudes of applied stress.

Ideal for contact mechanics model calibration. Full experimental data 
set is available online, request via yixiang.gan@sydney.edu.au.
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RC network and frequency responses
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Stress-dependent electrical conduction: Experiments
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Stress-dependent characteristic resistance and frequency
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Electrical conduction: RC network modelling
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Electrical conduction: Experiments vs Simulation
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Conclusions
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At rough surfaces (contact mechanics),
Contact stiffness and electrical contact resistance.
Stress-dependent power-law behaviour, both 
mechanical and electrical responses.
Correlations to the surface roughness 
measurement (e.g., fractal dimension).

In granular packing (complex network),
Effective RC responses under compression, 
stress-dependent power-law behaviour.
Observed stress-induced phase transition.
Universal scaling law.
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