Electrical Conduction in Compacted Granular Materials: From Contact Mechanics to Complex Networks School of Civil Engineering The University of Sydney, Australia Email: yixiang.gan@sydney.edu.au Twitter: @drgan **2018 STLE Annual Meeting, Minneapolis** ### **Granular materials** #### **Outline** - Background: effective properties of granular systems - Rough surfaces: contact stiffness and electrical contact resistance - Network properties: stress-dependent RC response and its scaling #### Conclusion Dr Chongpu Zhai (USYD / JHU) Dr Julia Ott (Bosch) Oleg Birkholz (KIT) Si Suo (USYD) Dr Dorian Hanaor (TUB) ## Background: Granular electrode structures - Both SOFC and LIB have porous electrode structures - electrode structures approximated as binary mixture of spherical particles - Similar electrode structures enable to use the same computational methods **Modelling Li-ion batteries** percolation pore space modelling interface, contact mechanics effective properties, complex network resistor network Ott, Volker, Gan, McMeeking, Kamlah (2013) A micromechanical model for effective conductivity in granular electrode structures. Acta Mechanica Sinica 29(5):682–698. ## Surface roughness vs fractality same mean roughness, different fractality The Search for the Absolute by Rene Magritte effective surface area effective contact area ## Contact stiffness and electrical contact resistance ## Rough surfaces: fractal dimension #### Contact stiffness and electrical resistance measurement (a) nano-indentation $E_c = \beta_E(F)^{\alpha_E}$ #### (b) ECR measurement $$G_c = \beta_G(F)^{\alpha_G}$$ ## Contact stiffness at rough surfaces #### (a) nano-indentation $$\frac{E_c}{E} = \beta \left(\frac{F}{EA}\right)^{\alpha}$$ #### Contact stiffness and electrical contact resistance Zhai, C., Gan, Y., Hanaor, D., Proust, G., Retraint, D. (2016) The Role of Surface Structure in Normal Contact Stiffness. Experimental Mechanics. 56: 359-368. Zhai, C., Hanaor, D., Proust, G., Brassart, L., Gan, Y. (2016) Interfacial electro-mechanical behaviour at rough surfaces. Extreme Mechanics Letters. 9: 422-429. Hanaor, D., Gan, Y., Einav, I. (2015) Contact mechanics of fractal surfaces by spline assisted discretization. International Journal of Solids and Structures. 59: 121-131. #### Contact stiffness and electrical contact resistance Sample surface characteristics for different surface treatments. | | | | | | _ | | _ | |----------------|---------------------|--------------------------------------|-------------------|-------------------------------|------------------------------------|---------------------------------|---| | Sample
type | RMS
roughness/µm | Fractal dimension,
D _f | | Contact stiffness, α_E | Electrical conductance, α_G | Exponent ratio, $lpha_G/lpha_E$ | | | | | , | | | <u> </u> | <u> </u> | 1 | | S1 | 0.057 ± 0.005 | 2.093 ± 0.062 | 0.009 ± 0.001 | 0.463 ± 0.022 | 0.816 ± 0.081 | 1.762 ± 0.194 | | | S2 | 4.179 ± 0.194 | 2.551 ± 0.022 | 0.224 ± 0.015 | 0.569 ± 0.029 | 1.026 ± 0.049 | $1,803 \pm 0,126$ | I | | S3 | 2.970 ± 0.276 | $2,626 \pm 0,017$ | 0.202 ± 0.010 | $0,605 \pm 0,022$ | $1,494 \pm 0,134$ | 2.469 ± 0.239 | I | | | | | | | • | - | | Zhai, C., Hanaor, D., Proust, G., Brassart, L., Gan, Y. (2016) Interfacial electro-mechanical behaviour at rough surfaces. Extreme Mechanics Letters. 9: 422-429. #### **Measurement data** - Surface morphological data: six types of surfaces (polished, SMAT, shot-peening) with distinct combination of roughness measures. Each sample with multiple 1mm x 1mm scans. - Contact stiffness measurement, six types of surfaces tested across a wide range of compressive stress (~five magnitudes). - Electrical contact resistance measurement, three types of samples tested across three magnitudes of applied stress. Ideal for contact mechanics model calibration. Full experimental data set is available online, request via yixiang.gan@sydney.edu.au. ## RC network and frequency responses ## Stress-dependent electrical conduction: Experiments finite random binary percolation networks. **PLoS ONE** 12(2): e0172298. Zhai, C., Gan, Y., Hanaor, D., Proust, G. (2018) Stress-dependent electrical transport and its universal scaling in granular materials. **Extreme Mechanics Letters** (under revision). ## Stress-dependent characteristic resistance and frequency Electrical conduction: RC network modelling Zhai, C., Hanaor, D., Gan, Y. (2017) Universality of the emergent scaling in finite random binary percolation networks. **PLoS ONE** 12(2): e0172298. Zhai, C., Gan, Y., Hanaor, D., Proust, G. (2018) Stress-dependent electrical transport and its universal scaling in granular materials. **Extreme Mechanics Letters** (under revision). ## Electrical conduction: Experiments vs Simulation Zhai, C., Hanaor, D., Gan, Y. (2017) Universality of the emergent sc finite random binary percolation networks. **PLoS ONE** 12(2): e0172298. Zhai, C., Gan, Y., Hanaor, D., Proust, G. (2018) Stress-dependent electrical transport and its universal scaling in granular materials. **Extreme Mechanics Letters** (under revision). #### **Conclusions** - At rough surfaces (contact mechanics), - Contact stiffness and electrical contact resistance. - Stress-dependent power-law behaviour, both mechanical and electrical responses. - Correlations to the surface roughness measurement (e.g., fractal dimension). - In granular packing (complex network), - Effective RC responses under compression, stress-dependent power-law behaviour. - Observed stress-induced phase transition. - Universal scaling law. ## Thank you! #### **Contact details:** School of Civil Engineering, The University of Sydney Email: yixiang.gan@sydney.edu.au Twitter: @drgan Website: drgan.org