

# Electrical Conduction in Compacted Granular Materials:

From Contact Mechanics to Complex Networks



School of Civil Engineering

The University of Sydney, Australia

Email: yixiang.gan@sydney.edu.au

Twitter: @drgan

**2018 STLE Annual Meeting, Minneapolis** 

### **Granular materials**



#### **Outline**

- Background: effective properties of granular systems
- Rough surfaces: contact stiffness and electrical contact resistance
- Network properties: stress-dependent
  RC response and its scaling

#### Conclusion



Dr Chongpu Zhai (USYD / JHU)



Dr Julia Ott (Bosch)



Oleg Birkholz (KIT)



Si Suo (USYD)



Dr Dorian Hanaor (TUB)



## Background: Granular electrode structures





- Both SOFC and LIB have porous electrode structures
- electrode structures approximated as binary mixture of spherical particles
- Similar electrode structures enable to use the same computational methods

**Modelling Li-ion batteries** 



percolation



pore space modelling



interface, contact mechanics



effective properties,

complex network

resistor network

Ott, Volker, Gan, McMeeking, Kamlah (2013) A micromechanical model for effective conductivity in granular electrode structures. Acta Mechanica Sinica 29(5):682–698.

## Surface roughness vs fractality



same mean roughness, different fractality



The Search for the Absolute by Rene Magritte

effective surface area



effective contact area

## Contact stiffness and electrical contact resistance



## Rough surfaces: fractal dimension





#### Contact stiffness and electrical resistance measurement



(a) nano-indentation



 $E_c = \beta_E(F)^{\alpha_E}$ 

#### (b) ECR measurement



$$G_c = \beta_G(F)^{\alpha_G}$$

## Contact stiffness at rough surfaces



#### (a) nano-indentation





$$\frac{E_c}{E} = \beta \left(\frac{F}{EA}\right)^{\alpha}$$



#### Contact stiffness and electrical contact resistance



Zhai, C., Gan, Y., Hanaor, D., Proust, G., Retraint, D. (2016) The Role of Surface Structure in Normal Contact Stiffness. Experimental Mechanics. 56: 359-368. Zhai, C., Hanaor, D., Proust, G., Brassart, L., Gan, Y. (2016) Interfacial electro-mechanical behaviour at rough surfaces. Extreme Mechanics Letters. 9: 422-429. Hanaor, D., Gan, Y., Einav, I. (2015) Contact mechanics of fractal surfaces by spline assisted discretization. International Journal of Solids and Structures. 59: 121-131.

#### Contact stiffness and electrical contact resistance

Sample surface characteristics for different surface treatments.

|                |                     |                                      |                   |                               | _                                  |                                 | _ |
|----------------|---------------------|--------------------------------------|-------------------|-------------------------------|------------------------------------|---------------------------------|---|
| Sample<br>type | RMS<br>roughness/µm | Fractal dimension,<br>D <sub>f</sub> |                   | Contact stiffness, $\alpha_E$ | Electrical conductance, $\alpha_G$ | Exponent ratio, $lpha_G/lpha_E$ |   |
|                |                     | ,                                    |                   |                               | <u> </u>                           | <u> </u>                        | 1 |
| S1             | $0.057 \pm 0.005$   | $2.093 \pm 0.062$                    | $0.009 \pm 0.001$ | $0.463 \pm 0.022$             | $0.816 \pm 0.081$                  | $1.762 \pm 0.194$               |   |
| S2             | $4.179 \pm 0.194$   | $2.551 \pm 0.022$                    | $0.224 \pm 0.015$ | $0.569 \pm 0.029$             | $1.026 \pm 0.049$                  | $1,803 \pm 0,126$               | I |
| S3             | $2.970 \pm 0.276$   | $2,626 \pm 0,017$                    | $0.202 \pm 0.010$ | $0,605 \pm 0,022$             | $1,494 \pm 0,134$                  | $2.469 \pm 0.239$               | I |
|                |                     |                                      |                   |                               | •                                  | -                               |   |



Zhai, C., Hanaor, D., Proust, G., Brassart, L., Gan, Y. (2016) Interfacial electro-mechanical behaviour at rough surfaces. Extreme Mechanics Letters. 9: 422-429.

#### **Measurement data**

- Surface morphological data: six types of surfaces (polished, SMAT, shot-peening) with distinct combination of roughness measures. Each sample with multiple 1mm x 1mm scans.
- Contact stiffness measurement, six types of surfaces tested across a wide range of compressive stress (~five magnitudes).
- Electrical contact resistance measurement, three types of samples tested across three magnitudes of applied stress.

Ideal for contact mechanics model calibration. Full experimental data set is available online, request via <a href="mailto:yixiang.gan@sydney.edu.au">yixiang.gan@sydney.edu.au</a>.



## RC network and frequency responses



## Stress-dependent electrical conduction: Experiments



finite random binary percolation networks. **PLoS ONE** 12(2): e0172298. Zhai, C., Gan, Y., Hanaor, D., Proust, G. (2018) Stress-dependent electrical transport and its universal scaling in granular materials. **Extreme Mechanics Letters** (under revision).

## Stress-dependent characteristic resistance and frequency



Electrical conduction: RC network modelling



Zhai, C., Hanaor, D., Gan, Y. (2017) Universality of the emergent scaling in finite random binary percolation networks. **PLoS ONE** 12(2): e0172298. Zhai, C., Gan, Y., Hanaor, D., Proust, G. (2018) Stress-dependent electrical transport and its universal scaling in granular materials. **Extreme Mechanics Letters** (under revision).



## Electrical conduction: Experiments vs Simulation



Zhai, C., Hanaor, D., Gan, Y. (2017) Universality of the emergent sc finite random binary percolation networks. **PLoS ONE** 12(2): e0172298. Zhai, C., Gan, Y., Hanaor, D., Proust, G. (2018) Stress-dependent electrical transport and its universal scaling in granular materials. **Extreme Mechanics Letters** (under revision).

#### **Conclusions**

- At rough surfaces (contact mechanics),
  - Contact stiffness and electrical contact resistance.
  - Stress-dependent power-law behaviour, both mechanical and electrical responses.
  - Correlations to the surface roughness measurement (e.g., fractal dimension).
- In granular packing (complex network),
  - Effective RC responses under compression, stress-dependent power-law behaviour.
  - Observed stress-induced phase transition.
  - Universal scaling law.





## Thank you!



#### **Contact details:**



School of Civil Engineering, The University of Sydney



Email: yixiang.gan@sydney.edu.au



Twitter: @drgan



Website: drgan.org