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In granular media, topological features are known to deter-
mine the effective material properties and boundary beha-
vior when interacting with other structural components. X-
ray computed tomography results are reported on sphere
packing structures in slender prismatic containers (X = 20,
Y = Z = 80 mm), filled and vibrated with both monosized
spheres (diameter d = 2.4 mm), Exp. (M), and polydisperse
spheres (1 mm < d < 1.25 mm), Exp. (P). Packing structures
were characterized by void fraction distributions, coordina-
tion numbers, contact angle distributions and Voronoi
packing fractions. In (M), an almost perfect hexagonal
dense packing exists in the total volume, associated with a
packing fraction ct&0.68. In additional packing experi-
ments, large ct values were achieved as well. Although the
d spread in (P) is relatively small, significantly different re-
sults are obtained: ct&0.62, regular structures are re-
stricted to narrow wall zones and distributions in the con-
tainer volume are nonhomogeneous. It is argued that the
small degree of ordered structure is a characteristic feature
of polydispersity for efficiently vibrated sphere packings.

Keywords: Monosized spheres; Polydisperse spheres;
Packing fraction; X-ray tomography; Prismatic containe;

1. Introduction

Packings of spherical particles play an important role in
many technical applications where mechanical or heat and
mass transfer issues are of prime importance [1–4]. In solid
state physics, monosized sphere systems are used for simu-
lating crystallization processes in order to study the emer-
gence of order [5, 6].

Historically, first investigations were limited to deter-
mine the main global structural property in containers, the
packing fraction ct, defined as the ratio of the volume occu-

pied by the particles to the total packing volume (with the
corresponding porosity or void fraction et = 1– ct). Systems
with one nominal sphere diameter d (mono-sized spheres)
were investigated as well as mixtures of spheres with two
or more diameters (binary, ternary systems) and systems
with diameter distributions (polydisperse spheres), see e. g.
McGeary [7]. It should be stated that in several of these ex-
perimental investigations the particle specifications were
not precisely defined with respect to sphericity, roughness,
diameter tolerances. Furthermore, the applied densification
methods (tapping, vibration, etc.) cannot be quantified any
longer. However, as we know today that characteristic
packing properties depend sensitively on the above-men-
tioned quantities, see e.g. [8, 9]; results from previous in-
vestigations might be masked by these effects.

Since the experiments from Benenati and Brosilow [10]
and Ridgway and Tarbuck [11] it is known that the packing
structure in finite containers is not homogeneous: in wall
zones the packing is structured whereas farther away in the
bulk zone, generally, a random packing exists. For the lat-
ter, packing fractions are close to the value for random
close packing, cRCP&0.64, determined first by Scott [12].
Based on experiments with cylindrical containers with
loosely filled or moderately densified monosized sphere
packings [10, 11, 13], a wall zone thickness of 4–5 sphere
diameters d was found. This value is still the basis of sev-
eral void fluctuation correlations, compare for example
[14]. However, Owe Berg et al. [15] and Vanel et al. [16]
showed for monosized sphere systems that structured pack-
ings can occupy almost the total packing volume of cylind-
rical containers for D/d >> 1, or H/d >> 1 (where D is the
cylinder diameter and H is the container height). In detailed
X-ray tomography experiments with defined one-dimen-
sional (1d) vibration, Reimann et al. [17] recently observed
largely ordered structures for a variety of container/sphere
diameter parameters.

Packing fractions in well structured zones are signifi-
cantly larger than cRCP. However, the container packing
fraction, ct, does not indicate clearly if structured packings
play an essential role because, depending on the container{ Deceased on May 25, 2018
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geometry, the packing fractions in the wall layers of d/2
thickness, cd/2, can decrease ct considerably, see Sec-
tion 3.1. Packing fractions significantly larger than cRCP
were experimentally obtained in cylindrical containers by
[17–19] as well by Dai et al. [20] with discrete element
modeling, DEM, simulations for containers with D/H < 1.
The hexagonal structure grew upwards from the plane bot-
tom wall and finally dominated the total packing volume.

With the availability of X-ray computed tomography
(CT) as well as the progress achieved in the development
of numerical simulation methods (e. g., DEM), packing
structures can be studied in much more detail by determin-
ing particle positions, contact number and contact angle
[6, 17, 21, 22] distributions and even contact surface sizes
[22, 23]. The degree of order has been quantified by various
mathematical tools [24–26]. A combination of CT with
DEM was proposed by Delaney et al. [27], where small dis-
placement perturbations using DEM were used to compen-
sate the CT measurement errors.

Previous CT investigations concentrated on the use of
both circular containers and monosized spheres. Results
for binary and polydisperse sphere packings were reported
by Scaffidi-Argentina et al. [28] and Al-Raoush and Alsa-
leh [29], respectively.

DEM simulations have been performed for all kinds of
spherical systems and for non-spherical particles as well
[30–34]. Most of these investigations do not include wall
effects. In respect to our investigations, the differences be-
tween monosized and polydisperse sphere packings are of
special interest. Compared to monosized systems with cRCP,
with increasing polydispersity, packing fractions increase
and contact numbers decrease [2, 25, 35]. However, for a
small polydispersity, of relevance in the present paper, dif-
ferences to monosized systems are negligible. With respect
to compressed sphere packings, polydisperse packings re-
sult in larger volumetric strains for the same initial packing
fraction [2, 36], caused by the larger particle mobility. This
result might be of relevance with respect to the susceptibil-
ity to granular convection flow.

Compared to circular containers, investigations with
prismatic containers are less numerous although such con-
tainers are relevant for many technical applications, among
others for blankets in future nuclear fusion reactors [3, 14,
37]. In the latter case, slender prismatic containers are of in-
terest where one dimension is significantly smaller com-
pared to the other dimensions, that is X << Y = Z, compare
Fig. 1. With decreasing X/d, wall zone effects become in-
creasingly important, however, the influence of the parame-
ter X/d on ct is much less known than the parameter D/d for
cylindrical containers.

Packing experiments with mono-sized and polydisperse
spheres have been carried out, e. g. by [38–40], without ac-
cessing the internal packing structures. For fusion reactor
blankets [3, 37, 38], the containers are closed apart from a
small filling opening, (FO). For efficient filling/vibration,
the FO must be at the highest elevation [38, 41] which hin-
ders obtaining a homogenous packing in the total container
as measured by [41]. The recent DEM simulations per-
formed by Desu et al. [42] are of significant relevance for
the work reported in this paper: a cubic container with a free
surface was investigated with dimensions of 25d, filled by
gravity without or with (1d) horizontal vibration. With lat-
eral vibration, it is found that the wall zones are signifi-

cantly increased from the initial thicknesses of 5–6d, and
ct increases from 0.62 to 0.64. Results are also given for ad-
ditional uniaxial compression of the packings. This results
for the non-vibrated packing in a ct increase 0.64; for the in-
itially vibrated packing, ct becomes 0.65. Connected to the
increase of ct is the strong increase of highly ordered fcc
and hcp zones.

In the present article, first detailed CT results are re-
ported for a polydisperse sphere system, experiment \Exp
(P)". The fact that a prismatic container is used might be
marginally restrictive for the conclusions of the results in
respect to cylindrical containers. First detailed CT results
for prismatic containers filled with monosized spheres, ex-
periment \Exp (M)", will be also presented and it will be
demonstrated that significant differences exist compared
to cylindrical containers.

2. Experiments

2.1. Container and packing specification

Figure 1 shows a schematic diagram of the Plexiglas con-
tainer. The container dimensions were selected to fit the to-
mography experimental requirements, see Section 2.2.
Nominal dimensions in the x, y, z directions are X =
20 mm and Y = Z = 80 mm; the real dimensions of the two
containers differed marginally from these values. The con-
tainers are considered as slender containers because of the
quite small X/d values.

Figure 1 also contains the denominations for the various
walls: the large front and back walls in the y–z planes and
the smaller side walls (1)– (4). The containers were filled
through an opening at the highest elevation by different

Fig. 1. Sketch of the prismatic containers with Cartesian coordinate
system and denominations of different walls. During vibration, the fill-
ing opening (FO) is at the highest elevation.
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methods: a) the container was fixed on the horizontal table
of the 1d vibrating device (Renfert Vibrax REF 1830000)
in a position revolved round the horizontal by about 458
and then vibrated in the vertical direction; b) the container
was mounted with the bottom side (3) on the vibrator table
and the total system was fixed in a position revolved round
by about 458 and then vibrated in a direction of about 458
to the vertical; c) (only for monosized spheres) the contain-
er was mounted with side wall (4) on the horizontal vibrator
table and vibrated. After two fillings, the crystallized pack-
ing had such a stiffness that for further fillings/vibrations
the system could be revolved in steps round the horizontal
up to the final position of about 458. It showed that with all
the above mentioned filling procedures similar results were
obtained. For (P) and (M), the arrangement a) was used.

Filling through the FO (diameter 5.5 mm) was only per-
formed for the last steps for achieving complete filling. In
the other cases, a 10 mm wide part of side wall (1), contain-
ing the FO, see Fig. 1, was removed.

In (M), aluminum spheres with a mean diameter of
d = 2.31 mm were used with d tolerances of about 2% and
deviations from the roundness index (= 1) below 1%, deter-
mined with a Leika QWin Suite (version 3.11) system.
Although these spheres are not perfectly monosized, highly
structured packings were obtained recently [17]. For (P),
polydisperse Al2O3 spheres with a quite narrow range of
diameter spread were selected, being characteristic for
many systems where in previous publications only a mean
diameter was given, which could imply the use of spheres
with a negligible diameter tolerance. The polydisperse
spheres were generated by sieving with mesh sizes of 1.0
and 1.25 mm. Sieving cannot prevent the occurrence of
some ellipsoidal or lentil-type particles. By rolling down
an inclined plane probably most of these particles were
sorted out. The mean diameter d was determined to
d = 1.12 mm; 98% of the particles are between 0.9 and
1.25 mm; the sphere fractions in this range are well fitted
by Nsph/Nsph-total = –32.45 + 58.59d – 26.06d2. In the follow-
ing, the dispersity of the used system is characterized by the
ratio of largest to smallest sphere diameters, k = 1.39.

The containers were first filled to&60%, followed by 1d
vibration with a defined vibration intensity C = a(2pf)2/g,
where a, f and g are the amplitude of the pulsation, the vi-
bration frequency and the gravitational acceleration, re-
spectively. In the next step, the container was filled up to
about 80% and vibrated. Then the residual empty space
was completely filled and vibrated. This procedure was re-
peated until no further particles could be added. The final
nominal packing fractions, ct-nom, were conventionally de-
termined by weight and volume measurements.

For (P), the C values were selected such that convective
granular flow was largely suppressed in order to avoid se-
paration effects. However, even for C&1, where an obser-
vable densification of the packing started, the occurrence of
granular flow could not be excluded. This might be a char-
acteristic feature of polydisperse packings where the devel-
opment of ordered structures is significantly smaller com-
pared to monosized packings. Only when the container
was largely filled, could C be increased without the occur-
rence of granular convection but still enabling local particle
relocation.

For (M), the situation was different: here, C&2 resulted
in an initial granular convection, which came to rest with
the formation of crystallization zones at the walls. Then, C
could be increased without changes of the crystallized
packing. This stable structure served as a template for the
next filling/vibration step. This procedure was repeated
with increased C until complete filling. In the final stages
the maximum nominal vibrator intensity C&6 was ap-
plied, however, in these cases the particle movement ampli-
tudes were restricted because of the nearly complete enclo-
sure in the container; \amplitude limited vibration",
compare [17].

Table 1 shows experimental parameters for (M) and (P).
Stimulated by the large ct obtained for (M), see Section 3.1,
further filling experiments were performed with the con-
tainer according to Fig. 1, however, with two more slightly
differing X values. Additionally, a slender prismatic con-
tainer with X = 10.1 mm and Y = Z = 100 mm was used,
see Table 2. One experiment was performed with spheres
from (P), for the others, monosized spheres with different
diameters were used.

2.2. X-ray computed tomography
and volume image analysis

In order to be able to study precisely morphological fea-
tures of the experiments, volume images with excellent
contrast as well as signal-to-noise ratio are required. Syn-
chrotron radiation was therefore chosen, i. e. to acquire to-
mographic data sets using hard X-rays. Measurements were
carried out using beamline ID19 of the European Synchro-
tron Radiation Facility (ESRF) in Grenoble, France. In or-
der to access sufficiently high photon flux density at the re-
quired photon energy to transmit the comparable large
samples, the beamline was operated in white mode with a
wiggler (w150, gap 29) as source. The softer part of the ra-
diation was filtered with 5.6 mm of aluminum, 8 mm of
copper and 1 mm tungsten plus a 1 mm-thick diamond fil-
ter. The resulting spectrum is rather broad with a peak at

Table 1. Experimental parameters and packing fractions for Exp (M) and Exp (P).

Container dimensions: X = 20 mm, Y=Z = 80 mm

Exp dmean

(mm)

X/d ct-nom Nsp voxels/d ct-CT dnom/dCT ct-nom/ ct-CT

(M) 2.312 8.6 0.677 12361 79 0.682 0.98 0.992

(P) 1.117 18 0.624 105044 37 0.624 1.03 1.0
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around 200 keV. Radiographic images of the specimens un-
der different angles of view were recorded with an indirect
detector: a 1 mm-thick LuAG:Ce (Ce-doped Lu3Al5O12)
lens-coupled to the ESRF inhouse-developed CCD-camera
FReLoN (2048 · 2048 pixel, 14 lm pixel size). The corre-
sponding pixel size is 30 lm. Tomographic reconstruction
was performed by standard filtered-back projection. Further
details have been published previously [17, 43].

Subsequent volume images analysis was carried out
using the iMorph software. Originally used to segment cel-
lular materials such as open cell metal foams, iMorph uses
a classical watershed method based on maximal ball mar-
kers to individualize the spheres and to make a precise con-
tacts analysis [44, 45]. The binarization process that con-
sists in identifying voxels belonging to spheres or void is
obtained through a simple threshold applied to the gray lev-
el distribution of voxels. The incertitude in the arbitrary
threshold (that we choose to obtain a packing fraction value
close to the experimental one) is impacting the voxels lo-
cated at the interface between solid and void. Figure 2
shows the gray level distributions of the (M) and (P) CT-
images and the packing fraction curve (1 – normalized cu-
mulative gray distribution curve). This error depends on
the voxel size and on the total surface of the spheres. Thus,
the error is more important for (P) as the spheres are smal-
lest (high specific surface). One can quantify the error on
the packing fraction values by taking different thresholds
close to the selected ones. For (P), the selected threshold
126 ± 10 gives a packing fraction 0.624 ± 0.012, and for
(M) the threshold 141 ± 10 gives a packing fraction equal
to 0.682 ± 0.009, see Table 1.

Only one maximal ball can be located in a sphere. The
maximal balls are obtained from the computation of the
aperture map [46]. The aperture map is obtained from the
distance map computation and contains for every solid vox-
el the radius of the maximal included balls that enclose the
voxel.

The maximal balls centers are used as watershed markers
that we used to label them, see Fig. 3. One can then com-

pute the volume of every sphere to deduce the diameter of
same volume spheres d-CT, as shown in Table 3, where r
is the standard deviation. We also computed the equivalent
ellipsoid to obtain morphological information of each
spheres to verify the sphericity of the balls. This allowed
us to identify the half axis length that corresponds to the di-
mension of the balls along the different main axis of the
equivalent ellipsoid. Thus, \a" corresponds to the main di-
mension toward the main direction of the ellipsoid and a >
b > c. We obtained good sphericity and also the computed
diameters are in good agreement with nominal values, so
this reinforces the arbitrary threshold that we chose to bi-
narize the volumes.

The local packing fraction can be computed for every seg-
mented ball by computing the local Voronoi cells and divid-
ing the ball volume by the Voronoi cell. We compute directly
the Voronoi map by using the same watershed algorithm and
instead of taking the maximal ball center as marker, we use
the entire labialized balls as markers. Then every sphere is
totally encapsulated into its Voronoi cells and the local pack-
ing fraction is inferior to 1, see Section 3.6.

Table 2. Prismatic container packing experiments.

d (mm) X* (mm) X/d Nlay s/d ct-meas ct-est

2.00 20.0 10.0 11 0.800 0.655 0.714

2.00 20.7 10.4 12 0.330 0.680 0.715

2.31 20.0 8.7 10 0.271 0.677 0.700

2.31 20.7 9.0 10 0.581 0.657 0.701

2.31 21.7 9.4 11 0.089 0.672 0.701

4.00 20.0 5.0 5 0.720 0.628 0.689

4.00 21.7 5.4 6 0.325 0.646 0.691

5.00 20.0 4.0 4 0.540 0.620 0.677

5.00 21.7 4.3 5 0.060 0.645 0.680

1.0–1.25 20.0 18.0 0.624 0.626

d (mm) X** (mm) X/d Nlay s/d ct-meas ct-est

2.00 10.1 5.1 5 0.770 0.637 0.703

2.31 10.1 4.4 5 0.205 0.663 0.690

1.0–1.25 10.1 9.1 0.617 0.619

* Y = Z = 80 mm
** Y = Z = 100 mm

Fig. 2. Characteristic gray level distribution for XCT imaging and the
corresponding dependence of the packing fraction ct.
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3. Results and discussion

3.1. Packing fractions

Table 1 shows packing fraction comparisons between nom-
inal and CT values. The ct-nom and ct-CT values agree well,
deviations between the mean diameters are less than 2%.
For (M), ct is surprisingly large considering the small value
of X/d. For circular containers, various correlations describe
the ct decrease with decreasing D/d, see e.g. Scott [12] and
Zou and Yu [47], and significantly lower ct values are re-
ported for the cases with comparable values of D/d, even
for 3d vibration and layer-wise filling [19]. Table 2 con-
tains the results for all packing experiments; here, the nom-
inal d values were used for (M) and (P).

With monosized spheres, homogeneous structures in the
slender prismatic containers are preferentially formed at
the large front and back walls (y–z walls), and crystalliza-
tion proceeds in the x-direction, details in Sections 3.2 and
3.3. For dense hexagonal packings, sphere layer distances
are 0.817d and the wall distances to the y–z walls are 0.5d.

The number of layers can then be calculated by

Nlay ¼ INTððX � dÞ=ð0:817dÞ þ 1Þ ð1Þ

and the dimensionless gap s/d which exists if the ideal hex-
agonal structure differs from the width X, is given by

s=d ¼ X � ðNlay � 1Þ 0:817� 1 ð2Þ

It was observed that for larger s/d values, zones with differ-
ently orientated structures are at the y–z walls occurred, as
well as less ordered structures at the side walls. Table 2
shows that large ct values are obtained preferentially for
small s/d. Most pronounced is this for d = 2.31 mm in the
container with X = 10.1 mm: for a X/d of less than 5, ct >
0.66 was obtained.

Table 2 also contains the column with estimated packing
fractions, ct-est. In this assessment, first used in previous
work [47], the total volume Vt is divided into an inner vol-
ume, Vt-in and the volumes of all d/2 layers, RVd/2. Then, it
holds that

ct � ct-est ¼ ðct-inVt-in þ Rcd=2Vd=2ÞVt ð3Þ

where cd/2 is the packing fraction of an individual d/2 wall
layer. The cd/2 values can be evaluated with the wall minima
of the void distributions, emin, see Section 3.3, by

cd=2 ¼ 0:604ð1� eminÞ=0:907 ð4Þ

In Eq. (3), for monosized spheres the values for hexagonal
dense packing are used with ct-in = 0.74 for the inner vol-
ume and cd/2 = 0.604 for the y–z wall layers. For all side
wall layers, cd/2 = 0.302 is assumed because ideally, only
every second sphere is in contact with these walls, see Sec-
tion 3.3. The ct-est values are an upper bound because the
gaps, mentioned above, are not considered in this estima-
tion.

Fig. 3. Volume rendering of particles in the prismatic containers: (a) Exp (M) with &12440 spheres; (b) Exp (P) with &105000 spherical parti-
cles. Colors are for marking purpose only.

Table 3. X-ray image sphere analysis. All measures are reported in mm.

Exp dCT r Half

axis a

r Half

axis b

r Half

axis c

r Aperture

radius

r

(M) 2.367 0.01 1.065 0.005 1.059 0.004 1.056 0.005 1.097 0.056

(P) 1.086 0.06 0.511 0.034 0.494 0.026 0.484 0.027 0.484 0.049
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The reason for large packing fractions in prismatic con-
tainers is that crystallization can proceed less restrictedly
from plane walls compared to cylindrical containers. At cy-
lindrical walls, a fairly well structured hexagonal pattern
can be also obtained by appropriate vibration. However, be-
cause of the smaller diameter of the second layer where the
sphere centers are located, the second layer spheres can no
longer arrange well in the dips of the first layer spheres; this
\curvature effect" was discussed in detail by [17]. For cy-
lindrical packings with large D/d, this effect is less ex-
pressed close to the cylindrical wall, however, still a non-
structured packing occurs further away.

In slender prismatic containers, crystallization on the
large walls dominates the total packing volume, see Sec-
tion 3.3. With increasing X/d, it becomes more difficult to
obtain only one type of structure in the packing volume.
Crystallization zones originating from different walls com-
pete and differently orientated structures occur. In the
boundary regions, the spheres are arranged less ordered,
which decreases ct. Such structures were determined by
Desu et al. [42] with DEM simulations for a cubic contain-
er, applying horizontal vibration. One can speculate if by
vertical vibration and optimized vibration parameters pack-
ing fractions significantly above 0.64 could have been
achieved also for this container geometry.

For (P), ct-est is determined with the individual d/2 pack-
ing fractions taken from the void fraction distributions. For
the y–z walls; cd/2 = 0.5, and for the side walls; cd/2 = 0.47.
For the bulk, the value measured for the container with
X = 20 mm is taken, ct-in = 0.638. Table 2 shows that there
is a good agreement with the measured data for the contain-
er with X = 10.1 mm.

In (P), the value X/d&18 is large compared to the thick-
nesses of structured wall zones and with this, differences to
cylindrical containers with similar D/d values are expected
to be small. For slender prismatic containers with consider-
ably smaller X/d, the random packing in the bulk disappears
and the wall zones become interconnected. This could pro-
mote the development of regular structures and could result
in a different dependence ct = f(X/d) compared to ct = f(D/
d) for circular cylinders. A corresponding result was ob-
served by Reimann et al. [40].

3.2. Void fraction distributions

Figure 4 shows void fraction distributions (VDs) in the di-
rection of the x, y and z axis, evaluated with the total pack-
ing volume. In (M), strong fluctuations exist in the total vol-
ume. This is most clearly seen in the VDs in x-direction,
Fig. 4b. Here, no damping effect is observed and each wave

Fig. 4. Void distributions (VDs) for (M) and (P): (a) and (c): VDs in the y and z directions; (b) and (d): VDs in the x-direction. Fluctuations are char-
acteristic for structured packing; in (M) these fluctuations exist in the total container volume whereas for (P) fluctuations are restricted to wall zones.

J. Reimann et al.: 3d tomography analysis of the packing structure of spherical particles in slender prismatic containers
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has double peaked maxima caused by the joint zone of two
neighbored sphere layers, characteristic for dense sphere
packings, measured first by [17] in an experiment with an
even larger relevant X/d. In Fig. 4a, the VDs in the y and z
direction are presented. Here, surprisingly, the first wall
minima have larger void fraction values than the following
minima. This behavior has not been observed before. The
explanation is given in Section 3.3.

For (P), the wall zone fluctuations are most developed in
the x-direction and damp out after 4–5 wavelengths; a bulk
zone with random packing exists in between. The VDs of
(P) in the y and z-directions contain a large zone with non-
structured packing, a remarkable gradient is observed in
the z-direction; in the y-direction this effect is smaller. Void
fraction gradients indicate nonhomogeneous packing distri-
butions, see Section 3.6.

Wall structure details are better elaborated by using char-
acteristic inner volumes, compare [17], for which not rele-
vant wall zones are cut-off. For the VD in the x-direction,
wall zones with thicknesses of 5 mm at the side walls (1)–
(4) were cut-off, resulting in an y–z cross-section with
5 mm < y, z < 75 mm. This inner y–z volume is considered
to be characteristic for two infinitely large parallel plates
with a distance of 20 mm.

For (M), the VD for the inner y–z volume has minima
very close to the value for hexagonal dense packings,
ehex = 0.093, which corresponds to a wall coverage of
0.907. Again using the values for hexagonal dense pack-
ings, see Section 3.1, a packing fraction of chex = 0.724 is
obtained which is close to the measured value cCT = 0.714.

For (P), the void fluctuations for the inner y–z volume are
also more developed and in the bulk zone a lower mean
void fraction is obtained with ebulk = 0.362, corresponding
to cbulk = 0.638, being very close to cRCP&0.64 for mono-
sized spheres. For the small polydispersity of k = 1.39, the
difference to monosized spheres is negligible.

Figure 5 shows for the inner y–z volume both packing
fraction and sphere number distributions as a function of
x* = x/d: In (M), the distances between all layers are close
to the value for hexagonal dense packing, Dx* = 0.817.

3.3. Sphere distributions in wall layers and bulk

Figure 6 shows for (M) views on the front wall obtained by
CT and photography. In the CT figure, the positions of the
sphere centers of the wall layer are plotted as circles which
have about the same size as the spheres. The agreement is
obvious; especially comparing structural imperfections (in-
dicated in red). An almost perfect hexagonal pattern at the
total front wall is observed in contrast to the DEM predic-
tions [42] resulting in ordered wall zones with different or-
ientations.

Such CT figures provide pivotal insights for understand-
ing for (M) the unexpected y and z VDs in Fig. 4a. Figure 7
shows that for the bottom side wall (3) the coverage of the
first wall layer with sphere centers at z* = z/d = 0.5 is quite
small. Showing also the sphere centers of the second layer,
located at about z* = 1, it is obvious that many spheres fit
quite well into the dips. The reason is the dominant struc-
ture on the large front and back wall consisting in Fig. 6 of
\vertical sphere chains". Ideally, every second vertical
row of this wall layer has a sphere in contact with the side
wall (3), the lowest spheres of the other rows are located at

z* = 1, see Fig. 6. Ideally, this is also the case for every
layer in the x-direction. The resulting pattern is well devel-
oped in the left part of Fig. 7. Because this situation at the
bottom wall is unstable with respect to gravity, this pattern
is easily disturbed and more spheres are in contact with the
wall. In the z-direction the layers have a distance of
Dz* = 0.5 compared with 0.817 in the x-direction, which
can be verified by the different fluctuation frequencies in
Fig. 4. At the side walls (2) and (4), ideally, vertical sphere
chains should exist with again every second row in contact
with the walls; the other rows should be staggered by the
distance Dy* = 0.866. Again, this different frequency can
be detected in Fig. 4. The righthand side of Fig. 7 shows
this structure partly for side wall (4). It should be mentioned
that \vertical sphere chains" are not mandatory for the large
order of the packing. In repetition experiments, also \hori-
zontal sphere chains" were observed, with all spheres of
the lowest horizontal row at the front wall are in contact

Fig. 5. Packing fraction and sphere number distributions in the nor-
malized x direction for the inner y–z volume. Compared to (M), a sig-
nificant damping of the fluctuations is observed for (P) relevant for
the decrease of structured ordering with increasing wall distance.

J. Reimann et al.: 3d tomography analysis of the packing structure of spherical particles in slender prismatic containers
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with the bottom side wall (3). Then, the lowest row of the
layer behind is located at z* = 1.

The fact that vertical vibration can result in structures
where a part of the bottom spheres is fixed with defined dis-
tances apart from the wall was measured first in the present
experiments. With the argument of gravitational instability,
this situation was excluded, e. g. by McGeary [7], and the
\double nested" structure was proposed where all wall
layer spheres are in contact with the walls. (This double-
nested structure was never observed in our CT experi-
ments). Mandatory for obtaining the sphere structure of

(M) are probably small X/d values and an efficient vibration
method. There are technical applications where such struc-
tures would be very beneficial [3, 37].

Figure 8 contains views on the front wall for (P). In the
CT plot, the total number of spheres was divided into three
fractions of 1/3 resulting in mean diameters of 1.04; 1.11,
and 1.18 mm. It shows that the d-groups are not homoge-
neously distributed but are rather concentrated in clusters.

(a)

(b)

Fig. 7. Visualization of sphere distributions in wall layers for (M): (a)
side wall (3); blue symbols: 1st layer; red symbols: 2nd layer. (b) 1st

layer on side wall (4). Characteristic are the small sphere coverages in
the wall layers compared to dense packings at the front and back walls,
compare Fig. 6.

(a)

(b)

Fig. 6. Visualization of 1st wall layer in y–z plane for (M): (a) CT re-
sults; (b) photography. Perfect hexagonal patterns are observed and a
few disturbances (indicated by red in (a)).

J. Reimann et al.: 3d tomography analysis of the packing structure of spherical particles in slender prismatic containers
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Concerning the role of polydispersity on crystallization,
there are CT results from three other experiments available
(details are the subject of a future paper), performed with
cylindrical containers: the first one is for a polydisperse
system (k = 1.5); the other two are for binary systems with
k = 1.25 and 1.33. It is important to note that filling and vi-
bration were the same as in [17] where for monosized
spheres large well-developed crystallization zones were
found. The important result is that the sphere distributions
at the cylindrical walls are similar to those in Fig. 8, that
is, significant hexagonal arrays do not exist and, therefore,

cannot serve as templates for further crystallization. Void
fraction fluctuations disappear after wall distances of a few
d, even faster than in (P).

Sphere distributions in the 1st and 3rd layers on the side
wall 4 are shown in Fig. 9. The nonhomogeneous distribu-
tion in the x–z plane is largest in the 1st layer and moderate
in the 3rd layer.

Table 4 summarizes the diameter fractions for the differ-
ent wall layers and the bulk region. Generally, the small
diameter sphere fraction is largest at the walls, see also
Fig. 5, due to the arching effect described by Duran et al.
[48]. This separation effect is most expressed for the side
walls (3) and (4) which represent bottom walls during vi-
bration in contrast to the top side walls (1) and (2), respec-
tively. Sphere numbers are also larger above bottom plates
compared to the spheres below top plates. The latter results
in the large value of the first minima in the z-VD, see Fig. 4.
For the total bulk volume, the fractions of the different
sphere groups are about equal, however, segregation results
in significant differences in subvolumes, see Section 3.6.

3.4. Coordination numbers

Only contacts between spheres are considered because con-
tacts with the Plexiglas walls are not measured by CT. For
dense hexagonal packing, Nc = 12, except for the 1st layer,
where Nc = 9. Figure 10 again confirms the hexagonal
structure in (M). (Note: The term dense hexagonal packing
comprises hexagonal close packed, hcp, structures (AB
packing sequence), face centered cubic, fcc, structures

(a)

(b)

Fig. 8. Visualization of 1st wall layer in y–z plane for (P): (a) CT re-
sults; (b) photography. Compared to (M), the regularity is much smal-
ler. Islands of spheres with similar sizes are observed in (a).

Fig. 9. Sphere distributions in (a) the 1st wall layer, (b) the 3rd wall
layer of side wall (4) for (P): Characteristic for all side walls is the non-
homogeneity of the sphere size distribution is largest in the 1st wall
layers.

J. Reimann et al.: 3d tomography analysis of the packing structure of spherical particles in slender prismatic containers
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(ABC sequence) as well as arbitrary sequences, for details,
see [17]).

For random close packing of monosized spheres, the
mean value for the bulk zone is Nc&7 [24]. Figure 10
shows that this value is also measured, as expected for the
small polydispersity of (P).

The dependence of Nc on the sphere diameter is more
sensitively depicted by presenting the Nc distributions for
the different d-groups, Fig. 11: Nc increases with d both in
the bulk zone and the 1st wall layer. The Nc distribution for
all d-groups results then in a broader distribution compared

to monosized spheres without changing remarkably the
mean value which is consistent with the CT result from
Al-Raoush [29].

3.5. Contact angle distributions

Regular structures are also reflected in the distributions of
the angles between the contact points on the spheres. In
the following figures, the poloidal angle d starts at the North
Pole, the azimuthal anglew starts at the x-axis, and frequen-
cies f for 108 groups are calculated. Again, results for the in-
ner y–z volume are presented. For (M), d has characteristic

Fig. 10. Contact number (Nc) distributions for different wall layers and
the bulk zone (inner y–z volume): (a) In (M), Nc = 12 is dominating for
all cases except the 1st wall layer where Nc can not exceed 9. (b) In (P),
broad distributions with a mean value of Nc&7 are found, except again
for the 1st layer where NC must be smaller.

Fig. 11. Exp (P): Contact numbers for different d-groups for(P) (inner
y–z volume): Nc increases with d both in (a) the 1st wall layer, and (b)
the bulk zone.

Table 4. Exp (P): sphere numbers, Nsph and Nsph fractions in first wall layers and bulk zone. (in total packing volume: Nsph fraction of
each d-group = 1/3).

walls S1 S2 S3 S4 front back bulk

Nsph 105042 1134 1174 1199 1276 5064 5051 48263

d-group Nsph fractions

1.05 0.333 0.379 0.360 0.581 0.542 0.352 0.350 0.327

1.11 0.333 0.315 0.327 0.293 0.279 0.341 0.332 0.335

1.18 0.333 0.306 0.314 0.126 0.179 0.308 0.317 0.338

J. Reimann et al.: 3d tomography analysis of the packing structure of spherical particles in slender prismatic containers

10

In
te

rn
at

io
na

l J
ou

rn
al

 o
f 

M
at

er
ia

ls
 R

es
ea

rc
h 

do
w

nl
oa

de
d 

fr
om

 w
w

w
.h

an
se

r-
el

ib
ra

ry
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

So
ut

h.
C

al
if

or
ni

aI
nf

or
m

at
io

n 
Se

rv
ic

es
 o

n 
O

ct
ob

er
 1

4,
 2

01
9

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



peaks at 0, 60, 90, 120, and 1808, Fig. 12, as expected for
the sphere array shown in Fig. 6. This distribution is the
same for all layers and the bulk zone, consistent for a regu-
lar structure in the total packing volume. The w distribu-
tions have peaks at 90 and 2708 from contacts between
spheres in the same layer and further characteristic peaks
from contacts with neighbored layers. The w distribution
is less regular compared to the d distribution because the w
evaluation becomes less accurate for d values close to 90
and 1808.

For (P), specific peaks are most expressed for the
1st layer, Fig. 13. With increasing layer number, these peaks
become rapidly smaller and a fairly homogeneous distribu-
tion is obtained. A significant dependence of the contact an-
gles on the d-groups was not found.

3.6. Voronoi packing fractions

In Fig. 14, Voronoi packing fractions cVor for the bulk vol-
ume are presented for three experiments. For (M), there is,
as expected, a large peak at cVor&0.74. Surprisingly, a
small peak at cVor&0.68 exists as well. It showed that the
latter values are located in a rather small zone close to the
plane defined by the edges between the side walls (2) + (3)

and (4) + (1). During vibration this plane is about horizon-
tal. Although the spheres crystallize preferentially at the
front and back plates, the side plates might have a certain
influence resulting in internal disturbances.

The distribution for (P) is compared with results for the
bulk zone with random packing from \Exp A" [17], per-

Fig. 12. Exp (M): Contact angle distributions for different wall layers
(inner y–z volume): (a) Both the poloidal angle d; and (b) the azimuthal
angle, w, have peaks at values in the total volume at values characteris-
tic for dense hexagonal packing.

Fig. 13. Exp (P): Contact angle distributions for different wall layers
(inner y–z volume); (a): poloidal angle d; (b): azimuthal angle, w. Dis-
tinct peaks are limited to small wall zones.

Fig. 14. Voronoi packing fraction cVor distributions in bulk zone. In
(M), cVor has a large peak at 0.74, characteristic for dense hexagonal
packing. The small peak results probably from disturbances during vi-
bration. The distribution for (P) is slightly broader than that one for
random packing of monosized spheres; Exp (A) from [17].

J. Reimann et al.: 3d tomography analysis of the packing structure of spherical particles in slender prismatic containers
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formed with monosized spheres, d = 2.3 mm. The mean
values are fairly close; the polydisperse sphere system re-
sults in a slightly broader distribution which agrees with
the results from Matsushima and Blumenfeld [49].

In order to investigate the distributions in the bulk in more
detail, subvolumes were used with cross-sections in the y–z
plane of 15 · 15 mm and an inner zone in the x-direction of
14 mm. Table 5 shows that four of these subvolumes are lo-
cated in the container corner regions with wall distances to
the side walls of 5 mm; the fifth submodule was placed in
the container center. The table contains for each subvolume
the number of spheres, Nsph, and below the corresponding
fractions of the d-groups. To the right, the mean cVor is given
and below the values for the d-groups. Considering that dur-
ing vibration the upper right corner is at the highest eleva-
tion, there are the following trends: the large sphere fraction
is smallest at the top and the largest at the lowest corner; the
opposite trend exists for the small spheres. Nsph differs also
between top and bottom corner. In all cases, cVor increases
with d. Because Nsph is smallest in the bottom subvolume,
cVor is also quite small for the large d-group. The largest cVor
values in the top corner are explained by the fact that vibra-
tion is most efficient in this zone during the increased vibra-
tion intensity in the last filling steps.

4. Conclusions

We reported the first detailed experimental investigations
of sphere packing structures in slender prismatic containers
(X << Y = Z), filled and vibrated with both monosized
spheres (diameter d = 2.4 mm;&12300 particles), Exp.
(M), and polydisperse spheres (0.9 mm < d < 1.25 mm;
&105000 particles), Exp. (P). The morphology and topol-
ogy of the sphere packings were determined by three-di-
mensional X-ray CT, including characteristic quantities
such as void fraction distributions, sphere center coordi-
nates, coordination numbers, contact angle distributions
and Voronoi packing fractions.

For (M), ct&0.68 was obtained which is close to the value
for dense hexagonal packing for the used geometry. The hex-
agonal structure at the large vertical walls served as a tem-
plate for crystallization in between. This kind of hexagonal
dense packing dominated the largest part of the packing vol-
ume, confirmed by all quantities mentioned above. The re-

sults from (M) also point out that crystallization processes
are significantly different compared to cylindrical containers.

Specific for the obtained structure is that the sphere den-
sities in contact with the other container walls, the side
walls, is much smaller than for a hexagonal array because,
ideally, every second sphere is in a position with a defined
distance to the wall. This results in void fraction distribu-
tions where the first wall minimum has a larger void frac-
tion value than the second minimum. This behavior is also
observed for the bottom walls (for the container orientation
during vibration, there were two bottom walls) which
means that many spheres are arranged in positions which
do not occur with gravitational filling.

The obtained structures are not specific for the revolved
arrangement of the container but were also observed for
the prismatic container with a horizontal position of the bot-
tom plate and applying 1d vertical vibration with a free par-
ticle bed surface.

Additional packing experiments with slender containers
were performed, primarily with monosized spheres with
different diameters in order to understand better the large
ct, obtained in (M). For other parameter values, large ct val-
ues are obtained as well. A simple relation is proposed in
order to understand the occurrence of high ct values, valid
for slender prismatic containers.

Although the diameter spread of (P) is quite small, very
different results are obtained: ct&0.62, regular structures
are restricted to wall zones of&4d thickness, and a non-or-
dered packing exists in a largest part of the volume. Similar
results were obtained in several older publications with
monosized spheres. However, two effects could have con-
tributed to the previous results: i) the d spread was so large
that these systems should have been considered as polydis-
perse systems, and ii) the densification of the particle bed
was small. The use of the same 1d vertical vibration method
for both the present experiments and the investigations in
cylindrical containers with monosized spheres [17], includ-
ing another polydisperse sphere system and binary spheres
(content of a future publication) show that the much less de-
veloped structure in (P) is primarily caused by the use of
non-monosized spheres. As compared to the monosized
samples, it is evident that polydispersity results in less or-
dered wall layers which inhibit the ordering process within
the granular media.

Table 5. Exp (P): Sphere numbers, Nsph, and Voronoi packing fractions cVor for different subvolumes: see legend at top of table; 1st row:
Nsph and mean cVor of subvolume; below: Nsph fractions and cVor for d-groups.

2796 0.647 Nsph cVor all d 2815 0.648

0.324 0.634 fr 1.04 cVor 1.04 0.357 0.636

0.325 0.646 fr 1.11 cVor 1.11 0.334 0.649

0.351 0.659 fr 1.18 cVor 1.18 0.308 0.661

2782 0.635

0.342 0.624

0.343 0.634

0.315 0.647

2613 0.626 2734 0.643

0.262 0.612 0.289 0.630

0.318 0.624 0.339 0.643

0.419 0.636 0.372 0.654

J. Reimann et al.: 3d tomography analysis of the packing structure of spherical particles in slender prismatic containers
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In technical applications with fluid flow through the
packing, the use of polydisperse systems with a larger k
compared to (P) could be of interest in order minimize the
build-up of regular wall structures which give rise to nonu-
niform velocity distribution, unfavorable for several heat
and mass transfer processes. In fusion reactor blankets [3,
37], however, heat, generated inside the particles, is trans-
ported primarily by conduction to the container walls. Con-
tainers are composed of slender prismatic units and large
packing fractions are of prime design importance.

Further DEM simulations and experiments are recom-
mended in order to identify: a) the maximum diameter
spread which is tolerable for the generation of hexagonal
dense packings, b) the effects of increasing X/d to also ob-
serve the crystallization dynamics originating from other
walls, c) the optimization of vibration methods to achieve
desirable topological structures.
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