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a b s t r a c t 

Normal contact behaviour between non-adhesive fractal rough particles is studied using a finite element 

method (FEM). A series of spherical grain surfaces with distinguished roughness features are generated 

by means of Spherical Harmonics. These surfaces are described by two roughness descriptors, namely, 

relative roughness ( R r ) and fractal dimension ( FD ). The contact behaviour of rough spheres with a rigid 

flat surface is simulated using FEM to quantify the influences of surface structure and sphere morphology 

by focusing on contact stiffness and true contact area. The dependence of normal contact stiffness ( k ) 

on applied normal force ( F ) is found to follow a power law ( k = αF β ) over four orders of magnitude, 

with both α and β being highly correlated with R r and FD . With increasing load, the power exponent 

converges to that of Hertzian contact, e.g., 1/3, independent of R r . Regions of true contact evolve through 

the formation of new microcontacts and their progressive merging, meanwhile the area distributions of 

contact island induced by various forces tend to obey similar Weibull distributions due to fractal nature 

in their surfaces. Contacts with larger values of R r are found to produce contact contours with higher 

fractal dimension as calculated by a 2D box-counting method. Our results suggest that the correlation 

between radial lengths in a quasi-spherical particle should be considered in studying contact behaviour. 

© 2020 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Granular materials are ubiquitous on Earth and account for a

significant portion of the landmass occurring on Earth’s surface.

The physical behaviour of granular systems may exhibit charac-

teristics of solids, gas or liquids ( Jaeger and Nagel, 1992 ). As im-

plied by William Blake, who famously wrote ‘to see a world in a

grain of sand’, nearly all of the laws of physics can be observed

in granular matter. However, the observation of a specific phe-

nomenon depends on measurement resolution, due to the geomet-

rical and topological variation of granular materials across multi-

ple scales. In the context of soil mechanics, particle morphology

can be categorized into three diverse yet correlated length scales,

namely (1) aspect ratio, roundness and roughness for particulate

size, (2) local structure and angularity, and (3) asperity structures

down to the finest scales ( Wadell, 1932 ; Barrett, 1980 ). Across mul-

tiple scales, various correlations between morphology and system

behaviour have been established using diverse experimental tech-

niques, including stereophotography ( Zheng and Hryciw, 2017 ; Sun
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t al., 2019 ), photoelastic ( Dantu, 1957 ; Hurley et al., 2014 ), and

-ray computed tomography ( Petrovic et al., 1982 ; Viggiani et al.,

004 ), and observing phenomena such as critical state ( Roscoe et

l., 1958 ; Yang and Luo, 2015 ), stress-dilatancy relation ( Taylor,

948 ; Li and Dafalias, 20 0 0 ), and the evolution of fabric tensor

 Oda, 1972 ; Gao and Zhao, 2013 ). However, as the foundation of

ranular mechanics, the contact behaviour of natural grains at the

article scale ( Zhai et al., 2019 ) merits further investigation. Alter-

atively, some existing descriptions have been established within

he context rigid-particle approximation ( Khun and Bagi, 2004 ;

i et al., 2009 ; Kuhn and Daouadji, 2018 ) from Discrete Element

ethod (DEM). 

DEM was firstly established in the realm of soil mechanics, as

n approach in which rigid volume-equivalent spheres are taken

s first-order approximations for irregular shaped sand particles in

rder to facilitate computationally efficient simulations of granular

ehaviour ( Cundall and Strack, 1979 ). Over the past four decades,

EM has been significantly developed by considering more com-

licated particle shapes, for example, clusters of discs or spheres

 de Bono and McDowell, 2018 ), ellipsoids ( Ng et al., 2018 ), super

r poly super ellipsoids ( Zhao et al., 2018 ; Zhao and Zhao, 2019 ),

olyhedrons ( Latham and Munjiza, 2004 ) and also realistic shapes

ased on image processing and mathematical model ( Andrade et

https://doi.org/10.1016/j.ijsolstr.2020.02.009
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l., 2012 ; Mollon and Zhao, 2014 ; Kawamoto et al., 2016 ). Although

omplicated shapes can be used in DEM, the calculation of con-

act forces is the product of progressively overlapping lengths and

nstant contact stiffness provided by the input contact law, thus,

nly qualitative analysis of particulate systems can be achieved.

iscrepancy will appear between DEM simulation and real obser-

ations ( Cavarretta et al., 2010 ; Zhai et al., 2016a ; Nardelli and

oop, 2018 ) especially for small-strain related geotechnical prob-

ems including wave propagation and liquefaction ( Yimsiri and

oga, 20 0 0 ; Chang and Hicher, 20 05 ). These inconsistences may be

raced back to the elastic contact region where fine-detailed sur-

ace features dominate contact stiffness. 

Besides contact stiffness ( Persson, 2006 ; Akrapu et al., 2011 ;

ohrt and Popov, 2012 ), real contact area plays a determining role

n many other physical phenomena, such as electrical conduction

 V.A. Yastrebov et al., 2015 ; Zhai et al., 2015 , 2016b ) and ther-

al transport ( Owen and Thomson, 1963 ; Brutsaert, 1975 ; Persson

t al., 2010 ). While numerous studies can be found on contact

etween nominally flat rough surfaces, the contact behaviour of

urved rough surfaces (e.g., granular materials in DEM) has at-

racted considerably less attention. As early as 1882, Hertz analyt-

cally studied frictionless and nonadhesive contact between a rigid

moothed sphere or asperity and an elastic flat surface ( Johnson,

985 ). Greenwood and Tripp (GT model, 1967 ) first modelled the

lastic contact between rough spheres based on the prevalent

reenwood-Williamson (GW) model ( Greenwood and Williamson,

966 ), where contact between two rough surfaces can be seen

s the collection of asperity contacts with a nominally flat sur-

ace. Due to inherent limitations of the original GW model dis-

ussed elsewhere ( Barber and Ciavarella, 20 0 0 ; Greenwood and

u 2001 ; Vakis et al., 2018 ), GT model uses only standard devi-

tions of sphere ‘radii’ distributions to quantify roughness glob-

lly without considering their correlation. For greater simplicity,

he contact of two elastic rough surfaces can be considered equal

o that between an equivalent rough surface and a flat ( Johnson,

985 ; Barber, 2003 ), which has been applied by nearly all simu-

ations of contacting rough surfaces. As for rough spheres, usually

oughness is only mapped into the sphere or corresponding flat

laten, and only one of them is elastic and the other being rigid

 Kagami et al., 1983 ; Cohen et al., 2009 ; Pohrt and Popov, 2013 ;

astewka and Robbins, 2016 ; Yastrebov, 2019 ), insufficiently cover-

ng the influences of roughness asperities if roughness and elastic-

ty are not present on the sphere at the same time. 

Many experimental approaches have been developed for char-

cterizing surface morphology, including nano-CT ( Shearing et al.,

010 ), near-field diffraction ( Nomura et al., 2005 ), laser profilome-

ry ( Weber et al., 2018 ), atomic force microscopy (AFM) ( Buzio et

l., 2003 ) interferometry ( Ovcharenko et al., 2006 ), frustrated to-

al internal reflection ( Rubinstein et al., 2004 ), and phase-contrast

icroscopy ( Dyson and Hirst, 1954 ). However, in these methods

he global 3D object morphology is limited by lateral or vertical

esolution, requiring the simplified simulation of finest scale fea-

ures in many computationally generated rough surfaces, by meth-

ds such as power spectrum density ( Persson et al., 2002 ; V.A.

astrebov et al., 2015 ; Müser, 2018 ) and Weierstrass-Mandelbrot

 Chiaia, 2002 ; Ciavarella et al., 2006 ; Hanaor et al., 2015 ) func-

ions. To improve the estimation of the standard deviation of ra-

ial length distributions for rough spheres in the aforementioned

T model, the power spectrum is directly mapped onto a sphere

or numerical analysis of rough sphere contact behaviours ( Pohrt

nd Popov, 2013 ; Pastewka and Robbins, 2016 ), however, with the

ncrease of vertical height, the mesh size becomes large, gradually

ecoming unrealistic in computational frameworks for contact me-

hanics, such as Boundary Element Method (BEM) and FEM. Hence,

t is reasonable to separate fine surface features from the global

article morphology, through two steps: first the reconstruction
f particle morphology, on the basis of experimental data at the

lobal scale, and then the inclusion of a constant fractal dimension

 FD ) at finer scales. The key of the latter step is to implement an

fficient method to quantify particle FD using limited experimental

ata at the surface scale. As early in 1977, Meloy implemented Fast

ourier Transformation (FFT) to reconstruct 2D particle outline and

ound the logarithmic linear relation between Fourier descriptors

nd degrees ( Meloy, 1977 ), which was further proved by Bowman

t al. (2001) and Mollon and Zhao (2012) . Recently, the 2D outline

as been extended to 3D surface via 3D FT, Spherical Harmonic

unction ( Wei et al., 2018 ), with the aid of X-ray computed tomog-

aphy (CT). 

In the present work we revisit the contact behaviour of rough

pheres using a more versatile FEM approach, motivated by the

dentified shortcomings of existing analytical approaches, which

enerally consider spherical grains while neglecting asperity de-

ormation. ( Hyun et al., 2004 ; Etsion et al., 2005 ; Pei et al., 2005 ;

astrebov, 2013 ; Xu et al., 2015 ). This study is organized as follows.

ection 2 provides a brief recapitulation of Spherical Harmonics to

econstruct or smooth particle shapes, and a thorough application

f extremely high degrees for multi-scaled sphere morphology for

roviding fine-scale feature on a curved surface. In addition, the

ecessary details of FEM simulation, for particle contact behaviours

sing graded mesh, are provided. Then radial length and mean cur-

ature distributions of the generated rough sphere are discussed.

ection 3 describes the results of contact mechanics simulations,

ith the focus on the combined effects from surface curvature and

oughness, i.e., global and local features. Contact stiffness, contact

rea, and radial contact stress distributions are described. Discus-

ions and conclusions are presented in Section 4 . 

. Methodology 

This section includes two main parts, namely generating

pheres with rough surfaces from a smooth sphere and finite el-

ment method (FEM). The rough spheres can be generated using

ltra-high-degree Spherical Harmonics technique (e.g. SH degree

p to 20 0 0) to reproduce morphological surface features coexist-

ng with a global curvature. The outline of the FEM modelling of

ough surface contact is illustrated in Fig. 1 . For FEM simulations,

he result is first validated by a Hertzian contact solution mimick-

ng the contact behaviour between an elastic sphere, with graded

esh sizes, and a rigid flat plane. Then, later in Section 3 , the con-

act behaviour of rough spheres is investigated focusing on the de-

endency on the morphological variations. 

.1. Ultra-high spherical harmonics (SH) for morphology features 

This Section demonstrates the efficiency of SH-based fractal di-

ension ( FD ) in characterizing particle morphology. SH descriptors

ave been previously used for describing particle shapes (e.g., Wei

t al., 2018 ) and the potential of extending this to fine-scale rough-

ess is further explored here. 

A surface point on a star-like particle can be represented in

erms of its distance from the particle centroid r i ( x i ( θ , ϕ), y i ( θ , ϕ),

 i ( θ , ϕ)) in a polar coordinate system, as in Fig. 2 , by the orthogo-

al SH function: 

 i ( θ, ϕ ) = 

∞ ∑ 

n =0 

n ∑ 

m = −n 

c m 

n Y 
m 

n ( θ, ϕ ) , (1) 

 i ( θ, ϕ ) = 

√ 

( x i − x 0 ) 
2 + ( y i − y 0 ) 

2 + ( z i − z 0 ) 
2 
, (2) 

here i corresponds to i -th selected points on the particle sur-

ace, ( x i , y i , z i ) and ( x 0 , y 0 , z 0 ) are the Cartesian coordinates of the

urface point and chosen centre inside the particle, θ∈ [0, π ] and
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Fig. 1. Outlines of FEM simulations of rough sphere contact behaviour. 

Fig. 2. Graded FEM mesh for the smooth sphere in the spherical coordinate system. 
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ϕ∈ [0,2 π ) are the latitudinal and longitudinal coordinates, respec-

tively, and c m 

n are the SH coefficients to be determined of degree

n and order m ; Similar to Fourier series to represent functions on

a planar circle, Y m 

n ( θ, ϕ ) ( n ∈ N, -n ≤ m ≤ n ) is the so-called SH

function, the angular solutions of Laplace’s equation for organizing

spatial angular frequency, and defined on the surface of a sphere

as: 

 

m 

n ( θ, ϕ ) = 

√ 

( 2 n + 1 ) ( n − | m | ) ! 
4 π( n + | m | ) ! P m 

n ( cos θ ) e imϕ , (3)

 

−m 

n ( θ, ϕ ) = (−1) m 

[√ 

( 2 n + 1 ) ( n − | m | ) ! 
4 π( n + | m | ) ! P m 

n ( cos θ ) e imϕ 

]∗

, (4)

where [.] ∗ denotes the complex conjugate and P m 

n (x ) are called as-

sociated Legendre functions, which can be expressed by Rodrigues’
ormula: 

 

m 

n ( x ) = 

(
1 − x 2 

) | m | 
2 · d | m | 

d x | m | 

[
1 

2 

n n ! 
· d n 

d x n 

(
x 2 − 1 

)n 

]
. (5)

For the single degree n , there are 2 n + 1 complex numbers

f SH coefficients to be determined according to Eq. (1) , hence

hen the user-defined maximum degree is n max , the whole set

f SH coefficients c m 

n includes ( n max + 1) 2 complex numbers for

epresenting a 3D surface. Due to the orthonormal properties of

H function, via choosing the angles ( θ , φ) at Gaussian quadra-

ures the more general calculation of c m 

n to reconstruct or smooth

arget particle shapes ( Garboczi and Bullard, 2017 ) follows the

ntegral 

 

m 

n = 

∫ 2 π

0 

∫ π

0 

sin θ · r ( θ, ϕ ) · [ Y m 

n ( θ, ϕ ) ] 
∗
d θd ϕ. (6)

In general, a greater degree of SH expansion corresponds to the

epresentation of finer features of particle morphology. 

The amplitude at each SH frequency can be measured by: 

 n = 

√ 

n ∑ 

m = −n 

‖ 

c m 

n ‖ 

2 
( n = 0 · · · 15 ) , (7)

here ||.|| is the second-order norm. To further quantify the de-

elopment rule of the amplitudes at different SH frequencies, L n 
alues are normalized by L 0 to eliminate the influence of par-

icle volume. Moreover, because L 1 does not influence the SH-

econstructed particle morphology, L 1 is not considered. The SH

escriptors characterizing the particle morphology can be finally

efined as: 

D 0 = 1 

D n = L n / L 0 , ( n = 2 , 3 , 4 , 5 . . . ) 
. (8)

The exponential relation between SH descriptor D n and SH de-

ree n can be expressed by: 

 n ∝ n 

β, (9)
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Fig. 3. Rough sphere morphology features determined by different degrees of the 

same set of SH coefficients (the red dashed line denotes the boundary of the mesh 

refinement zone in FEM). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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here β = −2 H is the slope of the regression plot of log ( D n ) ver-

us log ( n ) and H is the Hurst coefficient that is related to the Frac-

al Dimension ( FD ) of Fourier transformation ( Quevedo et al., 2008 ;

uss, 2013 ) by the following expression: 

 D = 3 − H = ( 6 + β) / 2 . (10)

Appendix I details the logarithmic relations between SH de-

criptor D n and degree n of six kinds of particles. Again, it is

roven that SH-based FD enables the description of hierarchical

article morphological features. 

To calculate the difference between two objects, according to

arseval’s theorem and orthogonality of SH function, 

 2 π

0 

∫ π

0 

r ( θ, ϕ ) d θd ϕ = 

1 

4 π

∞ ∑ 

n =0 

n ∑ 

m = −n 

‖ 

c m 

n ‖ 

2 
, (11) 

Root Mean Square Distances ( RMSD ), associated with their SH

oefficients, between two objects can be applied to quantify how

lobally different they are and follows ( Gerig et al., 2001 ; Shen et

l., 2009 ): 

MSD = 

√ 

1 

4 π

n max ∑ 

n =0 

n ∑ 

m = −n 

∥∥c m 

1 ,n 
− c m 

2 ,n 

∥∥2 
, (12) 

here c 1 ,n and c 2, n are the SH coefficients of two surfaces. Due to

he characteristic length scale (i.e. asperity) of contacts of rough

articles, extremely high degree of SH is necessary. Due to the

umulative changes of each order m , the closed form bridging

avelength, in terms of angular resolution, and the specific degree

 cannot be specified directly. Instead, a frequently-used rule of

humb is given by ( Jekeli, 1996 ): 

θ = 

π

n 

, (13) 

here �θ is the polar angle between two adjacent surface points.

urthermore, Fig. 3 shows a rough sphere’s surface depicted us-

ng different degrees of SH expansion and the same minimum SH

egree from identical sets of SH coefficients. It is evident that for

imulating asperities of rough spheres the maximum SH degree
hould be higher. From analogous FEM simulations of contact be-

ween rough flats of unit square surface ( Hyun et al., 2004 ; Pei

t al., 2005 ), a fine mesh size 1/128 of the global surface square is

ound to be sufficient. In this study, the normalized maximum sep-

ration or overlap by sphere radius is roughly equal to 0.02, hence

he selected mesh ratio (0.0015) is considered to be fine enough,

s shown in the zone of refined FE meshes in Fig. 2 , and the fur-

her proof will be discussed hereafter. Consequently, according to

q. (13) and Fig. 3 the maximum SH degree is set to 20 0 0, and c 2, n 

s set to the SH coefficient of an unit sphere: 

 2 ,n = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

c 2 , 0 
c 2 , 1 
c 2 , 2 

. . . 
c 2 , n max 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

T 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

2 

√ 

π
0 

0 

. . . 
0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

T 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

2 

√ 

π(
0 0 0 

)T (
0 0 0 0 0 

)T 

. . . (
0 · · · 0 

)T ︸ ︷︷ ︸ 
2 ×n +1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

T 

. 

(14) 

By conducting SH expansion to a greater degree, finer and finer

etails of particle surfaces can be depicted. To isolate roughness

rom roundness or curvature in the study of contact behaviour,

ough spheres are considered with isotropic macro-scale curvature.

t is possible to combine global (e.g., roundness and curvature) and

ocal (e.g., roughness) features using a complete set of SH descrip-

ors. However, this work focuses on the roughness features of a

urved surface, to highlight the competing effects of local rough-

ess and curvature. Hence, the lower SH degree is here set to

1, which is high enough to serve as the cut-off between round-

ess and roughness ( Garboczi, 2002 ; Zhao et al., 2017 ). Considering

1 ≤ n ≤ 20 0 0 and 31, the ratio of large to small wavelengths are

bout 65, which is of the same magnitude of that (512/4) of molec-

lar simulations in Pastewka and Robbins (2016) . Meanwhile, we

pply the power spectrum density, widely used in nominally flat

urfaces, to directly quantify the cut square area with protection of

ize 0.2 R × 0.2 R at mesh fine zones of SH-generated rough sphere

urfaces. The log-log linear segment, ranging over more than two

rders of magnitude in the calculated power spectrum densities,

emonstrates self-affine features of the SH-generated rough struc-

ures. After applying roll-off and cut-off of wavelengths in terms of

he SH degree, SH coefficients c 1, n can be explicitly denoted: 

 1 ,n = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

c 1 , 0 
c 1 , 1 
c 1 , 2 

. . . 
c 1 , 30 

c 1 , 31 

. . . 
c 1 , 20 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

T 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

2 

√ 

π(
0 0 0 

)T (
0 0 0 0 0 

)T 

. . . (
0 · · · 0 

)T ︸ ︷︷ ︸ 
2 × 30+1 (

c −31 
1 , 31 

· · · c 0 1 , 31 · · · c 31 
1 , 31 

)T ︸ ︷︷ ︸ 
2 × 31+1 

. . . (
c −20 0 0 

1 , 20 0 0 
· · · c 0 1 , 20 0 0 · · · c 20 0 0 

1 , 20 0 0 

)T ︸ ︷︷ ︸ 
2 × 20 0 0+1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

T 

. 

(15) 

The production of virtual complex SH coefficients in polar co-

rdinate systems has been conducted in earlier studies ( Wei et al.,

018 ). However, the capacity (10 −307 , 10, 307 ) of standard 64-bit

omputers can be rapidly exceeded. i.e. when n is higher than 200

ccording to Eqs. (3) and (4) in the calculation of SH functions.
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Fig. 4. Relations between D n and SH degree of generated rough spheres. Colour 

black, red, yellow, blue and purple indicate R r equal to 10 −5 , 2 × 10 −5 , 6 × 10 −5 , 

10 −4 and 2 × 10 −4 ; the scattered levels of lines mean FD equal to 2.0, 2.1, 2.2, 2.3, 

2.4 and 2.5. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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We applied recursion formulae of 

√ 

( 2 n +1 )( n −| m | )! 
4 π( n + | m | )! 

P m 

n ( cos θ ) , set

to P m 

n ( cos θ ) , to approximate the SH function (see Page 963 in

Gradshteyn and Ryzhik, 2007 ): ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

P 0 
0 ( cos θ ) = 1 

P 1 
1 ( cos θ ) = 

√ 

3 sin θ

P m n ( cos θ ) = αm 
n cos θ · P m 

n −1 ( cos θ ) − βm 
n P 

m 
n −2 ( cos θ ) , n ≥ 2 , 0 ≤ m ≤ n − 2 

P n −1 
n ( cos θ ) = 

√ 

2 n + 1 cos θ · P m −1 
n −1 ( cos θ ) , n ≥ 1 

P n n ( cos θ ) = 

√ 

2 n +1 
2 n 

sin θ · P n −1 
n −1 ( cos θ ) , n ≥ 2 

αm 
n = 

√ 

( 2 n +1 ) ( 2 n −1 ) 
( n + m ) ( n −m ) 

βm 
n = 

√ 

( 2 n +1 ) ( n + m −1 ) ( n −m −1 ) 
( 2 n −3 ) ( n + m ) ( n −m ) 

.

(16)

Although a recursion formula is adopted here, a data underflow

phenomenon can still appear in some regions. For example, when

for low angular separations ( θ = 0 or π ), The value of P 2500 
2500 

( cos θ )

is about 10 −50 0 0 . Hence, a scaling factor Q = 10, 260 is introduced

to P m 

n ( cos θ ) , by which arbitrary polar angles can be computed up

to the maximum SH degree n = 2190 higher than 20 0 0 for recon-

structing rough spheres in this study. Simultaneously, to remove

influences of randomness of complex SH coefficients on particle

morphology, all the rough sphere surfaces are generated by the

same set of SH coefficients c n 
m multiplying real numbers k n to

form the relations between n and D n to introduce fractal dimen-

sion in Fig. 4 , hence Eq. (1) can be written as: 

r i ( θ, ϕ ) = 

1 

Q 

∞ ∑ 

n =0 

n ∑ 

m = −n 

k n c 
m 

n 

[
Q P m 

n ( cos θ ) e imϕ 
]
, k n ∈ R , (17)

where R denotes real number. Furthermore, relative roughness ( R r )

is defined as the normalized RMSD by radius of unit sphere from

c 2,0 in Eq. (14) : 

R r = 

√ 

1 
4 π

∑ n max 

n =0 

∑ n 
m = −n 

∥∥c m 

1 ,n 
− c m 

2 ,n 

∥∥2 

c 0 
2 , 0 

· Y 0 
0 ( θ, ϕ ) 

. (18)

In practice, this term describes the ratio between the local

roughness and the radius of surface curvature. Then according to

Eqs. (7) to (10) and (18) , when FD and R r are given, k n can be de-

termined, following D n and L n . 
Notably, the selection of polar angles of refined areas in

ig. 2 can also vary the actual spatial distribution of asperities

ven for the same SH coefficients. Here, the same reference po-

ar angle ( θ , φ), with a nominally lowest point equal to ( 3 π2 , 
π
2 ) in

ig. 2 , is applied for different rough spheres. Fig. 4 illustrates rela-

ions between D n and n of generated rough spheres, while Fig. 5

epresents the distributions of radius lengths and curvature values

f R r equal to 10 −5 and 2 × 10 −4 . Rough surfaces are often char-

cterised in terms of standard deviations of height distributions

n rough surfaces ( Persson et al., 2002 ) or radial length distribu-

ions in the case of rough spheres ( Greenwood and Tripp, 1967 ),

ince these are mostly Gaussian distributions, this corresponds to

ommonly used terms of roughness. In this study, the normalized

oughness of mean radial length for R r = 10 −5 and 2 × R r = 10 −5 

re about 2 × 10 −5 and 10 −3 , respectively. The normalized spher-

cal roughness in analytical solutions of Greenwood and Tripp

1967) corresponds to [2 × 10 −5 2 × 10 −4 ]. Hence, it is reasonable

o separate contact response into three stages according to nor-

al contact force via GT model in the following parts. Although

he radial length distributions of Fig. 5 (a) and (b) nearly coincide,

heir morphological features indicated by the contour maps are di-

ergent, meanwhile (c) and (d) demonstrate that larger values of

 r increase FD and the mean curvature (see Appendix II ) value

istributions. Greenwood and Tripp (1967) applied a determinis-

ic analytical solution ( Greenwood and Williamson, 1966 ) to in-

estigate elastic behaviours of rough spheres and concluded that

he response, influenced by geometry, is governed by asperity den-

ity, roughness (the standard deviation of radius length distribution

aken to be a strict normal distribution) and sphere-shaped asper-

ty curvature. Interestingly, normal distributions can describe both

adial length and mean curvature value distributions of SH-based

ractal surfaces of spheres in Fig. 5 . Regarding the approximation of

sperity shape, Ciavarella et al. (2006) re-vitalized the Greenwood

nd Williamson model and considered the error of mean asperity

urvature for Gaussian surfaces to be of a constant order. However,

rom the contour maps of Fig. 5 (c) and (d) the mean curvature may

ot be always of the same order, and the scope would be much

arger when Gaussian curvature values are taken instead. Especially

or explicit numerical simulations and experiments, the points be-

ween or connecting asperity regions may also make contact with

he compressing platen, although they are not commonly consid-

red as asperities. Our results here are based on logarithmic linear

elations between D n and n of SH analysis, which is experimentally

onfirmed in larger-length scale, but assumed in finer morphology

etails. 

.2. FEM model 

In this study, a surface mesh is firstly generated via a MAT-

AB script and is converted into a solid using an open-source mesh

enerator Gmsh ( Geuzaine and Remacle, 2009 ). 

The FEM simulations presented here are conducted using

ommercial finite element software, ABAQUS. According to the

ertzian contact model, the effective radius, R ∗, is defined as

/ R ∗ = 1/ R 1 + 1/ R 2 , where R 1 and R 2 are radii of contacting

pheres. The effective contact modulus E ∗ is defined as 1/ E ∗ = (1-

 1 
2 )/ E 1 + (1- v 2 

2 )/ E 2, where E 1 , E 2 and v 1 , v 2 are the elastic Young’s

oduli and Poisson’s ratios of the corresponding parts. The con-

act radius a can be calculated by a = 

√ 

R ∗δ, where δ is the inden-

ation depth ( Johnson, 1985 ). To obtain sufficient accuracy in sim-

lating Hertzian contact and efficiency in FEM-based contact be-

aviours, extremely fine mesh sizes of 0.0015 R , are used within the

otential contact region, as illustrated by the inner yellow circle in

ig. 2 . The vertical height between the boundary mesh-fine region

nd the lowest point is 0.0225 R , with R being the radius of the

phere. In the transition zone (between the yellow and red circles
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Fig. 5. Cumulative distributions of radii and curvature values for R r values of 10 −5 and 2 × 10 −4 . Blue, orange, yellow, purple and green curves represent FD vales of 2.1, 2.2, 

2.3, 2.4 and 2.5; Black circles represent the fitted Normal distributions of FD = 2.3. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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n Fig. 2 ), the average mesh size is around 0.1 R . Other parts are

eshed roughly with a mesh size of 0.4 R . Following Section 2.1 ,

olar coordinates ( θ , ϕ) of spherical mesh vertices are applied in

q. (17) for rough spheres with given FD and R r . The corresponding

riangulated surface is then directly implemented as FEM surface

esh. 

By means of regionally varying mesh resolutions, solid elements

f high mesh qualities (e.g. 0.5 < h/l < 1.5, where h is the height,

nd l is the length) can be obtained, by converting the triangu-

ar surface mesh to a 4-node tetrahedral volume mesh (C3D4). The

igid platen is composed of 4-node rigid quadrilateral elements

R3D4), with mesh size equalling to 0.0015 R . Jackson and Green

2005) have pointed out that linear FEM elements can yield the

ame result as that of quadratic elements. Concurrently, compared

ith hexahedron tetrahedron is chosen due to the efficiency of tri-

ngles in depicting complicated rough surfaces. The values of v and

riction coefficient are both set to 0 to isolate the purely normal

ontact response ( Borri-Brunetto et al., 2001 ; Pei et al., 2005 ; Hyun

nd Robbins, 2007 ). Indeed, Hyun et al. (2004) suggested that the

alue of Poisson’s ratio has little effect on the relationship between

ormal contact area and force. 

Elements of the coarsest mesh size of the semi sphere are fixed

n all directions, while the movements of finer elements are not

onstrained. The rigid platen moves only vertically, with an in-

reasing normal displacement load to compress the sphere. 

FEM simulations are conducted in Abaqus Explicit environment,

nly key information is given here with more details available in

s

he Abaqus Users’ manual (2016) . The constitutive elastic law of

ulk material is assumed to be isotopically linear in terms of first-

rder tetrahedron (C3D4) elements ( Hyun et al., 2004 ; Abaqus,

016 ). Full integration is considered for calculating the virtual

ork. The total mass of each element is defined by lumped mass

atrix and averagely distributed over its four nodes. Also, a four-

ointed integration scheme, where distributed loads are integrated

ith three points, is applied. An explicit integration scheme with

n augmented Lagrangian framework is considered, 

 · ü + F i − F e = 0 , (19)

here ü is the acceleration vector, M is the diagonal mass ma-

rix and F i and F e are internal and external force vectors. The cen-

ral difference integration framework is implemented to discrete

q. (19) in time: 

˙  n +1 / 2 = ˙ u n −1 / 2 + 

�t n +1 + �t n 

2 

ü n , (20) 

 n +1 = u n + �t n +1 ˙ u n +1 / 2 , (21) 

t = 

√ 

ρ

E 
L min , (22) 

here u is a freedom degree, n means n -th time step or increment,

nd �t denotes time step; ρ is the density of the bulk material, E

s the elastic modulus, and L min is the minimum length of mesh

ize. 
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Fig. 6. Normalized contact pressure ( p / E ∗) simulated using a constant compressive 

force ( F/E R 2 = 

4 
3 

× 0 . 1 3 ) for varied conditions of R r and FD (red circles represent 

the Hertzian contact boundaries for the same normal force) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Schematic for evaluating local contact pressure. 

t  

d  

i  

f  

c  

t  

t  

w  

i  

c  

t  

c  

i  

r  

e  

a

3

 

t  

p  

o

r  

 

n

 

 

a  

W  

n  

d  

c  

f  

t  

c

 

b

N  
3. Results and discussion 

Here we present simulation results from 25 contacts with rough

spheres and one with a smooth sphere, to elucidate the influences

of R r and FD on the resulting contact pressure, contact area and

contact stiffness. 

3.1. Contact pressure 

Maps of the contact pressure (corresponding to the sum of

nodal contact forces divided by the associated element face area)

are illustrated in Fig. 6 . Applying a rigid flat platen as a counter

surface and the absence of friction results in nodal forces that are

all perpendicular to the contact plane. The results suggest that

greater fractality, as indicated by larger FD values, results in a

more heterogenous pressure contour, with larger maximum asper-

ity contact stress. An increasing R r results in an evident drop in the

total contact area, with increasing stress concentration, and larger

maximum radial distance. 

To quantify the influence of surface morphology on contact

stress distributions, contact pressure at varying radial distances ( a )

on different regions is further calculated by the ratio of nodal con-

tact force to contact area from square R3D4 elements as in Fig. 7:

p ( a ) = 

∑ 

i F i 

π(a + d) 
2 − πd 2 

, (23)

where F i is the i- th nodal contact force on the rigid flat platen

and d is the width of the circular ring. Each individual ring is di-

vided into several subdomains having identical angles (shown by

α in Fig. 7 ) for obtaining further information regarding the angu-

lar pressure distribution. As shown in Fig. 7 , the mean pressure in

blue, yellow and red sub-rings are calculated from the correspond-

ing nodes within these domains. 

The radial stress distribution for various values of R r and FD

are presented in Fig. 8 . A nearly complete coincidence is found be-
ween the Hertzian solution and results for R r = 0 in Fig. 8 (g), vali-

ating the simulation framework presented in this study. As shown

n Fig. 8 (a), the stress distribution for lower values of R r deviates

rom the Hertzian solution. A larger fluctuation in contact pressure

an be generally observed for larger FD . It is interesting to note

hat at large values of R r there is a contact stress peak at the posi-

ion of a/R ≈ 0.05, due to the randomness of particle morphology

hich results in a fall of heights of particle surface asperities, as

n Fig. 5 (a) and (b). In Fig. 8 , at a/R ≈ 0.05, the maximal values of

ontact pressure exhibit a sharp increase while the minimal values

end to be smoother, demonstrating the significant influence of lo-

al surface features on contact pressure. Compared with determin-

stic models, such as Greenwood and Tripp (1967) , our numerical

esults here are more consistent with optical experiments ( Sharp

t al., 2018 ) where the maximum normalized contact pressure (at

/R = 0) is found to be greater than that of the Hertzian solution. 

.2. Contact area 

In this study, contact area ( A ) is calculated based on the sum of

he deformable element face areas with nodes contacting the rigid

laten. According to the Hertzian contact model, the contact radius

f a smooth sphere compressed against a rigid flat is given as 

 H = 

(
3 F R 

4 E ∗

) 1 
3 

. (24)

Here, the contact area is normalised by πR 2 and the force is

ormalised by E ∗πR 2 , 

A 

πR 

2 
= 

(
3 π

4 

) 2 
3 

×
(

F 

E ∗πR 

2 

) 2 
3 

. (25)

As shown in Fig. 9 , the relationship between normalized force

nd area for small R r is found to agree with the Hertzian solution.

ith increasing FD and R r , A/ ( πR 2 ) is found to deviate more sig-

ificantly from the Hertzian solution. Fig. 10 illustrates the fractal

imension of the contact boundary, FD BC , calculated using a box-

ounting method, for varied FD and R r at a constant compressive

orce. For lower R r values the outlines are tortuous to a similar ex-

ent with the increase of FD , meanwhile for higher R r the FD of

ontact boundary increases. 

In the GT model ( Greenwood and Tripp, 1967 ), Hertzian contact

ecomes applicable only when F > N 2 , with 

 2 = 100 N 1 = 100 S q 
∗E ∗

√ 

2 R 

∗S q 
∗
, (26)
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Fig. 8. Normalised contact pressure at varying radial distance for different values of R r and FD. 
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here 

 q 
∗ = 

√ 

S q 1 
2 + S q 2 

2 
, (27) 

here S q is the root mean square (RMS) surface roughness and

an be denoted by the standard deviation of the normal distribu-

ion to fit asperity ‘radius’ distribution. We apply a power law, i.e.,
A 

πR 2 
= α( F 

E ∗πR 2 
) β , to correlate normalized forces with contact area

or contact forces smaller than N . For all 25 cases, values of good-
2 
ess of fit (calculated as R-square) are more than 0.99. As shown in

ig. 11 (a) and (b), for the lowest relative roughness (e.g. R r = 10 −5 )

he values of both α and β do approach closely to those of the

ertzian solution in Eq. (25 ) ( ( 3 π4 ) 
2 
3 and 

2 
3 , respectively), however

or higher R r both of them are not well described by the Hertzian

olution and more fluctuations appear, although convergence to

he Hertzian solution occurs at high loads as the limit of linear

lastic material is achieved, thus the contact forces cannot be en-
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Fig. 9. Contact area ( A/ ( πR 2 )) V.S. compression force ( F/ ( E πR 2 )). Hertzian solution given by the solid black line. 

Fig. 10. Relationship between the fractal dimension of contact area, FD BC , calculated 

by a 2D box-counting method and FD of particle surface for various R r at the same 

compressive force ( F 
E ∗πR 2 

= 

4 
3 

× 0 . 1 3 ) in Fig. 6 . 
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larged for the rationality of pure elasticity in FEM models. By con-

trast, for spheres of both high- and low-roughness, Pastewka and

Robbins (2016) showed the convergence of the contact area to the
Fig. 11. Relationships between FD 
ertzian solution at extremely high loads. This discrepancy may be

ttributed to: (i) Sphere rigidity limiting the study of deformation-

nduced contact ( Li et al., 2018 ); or (ii) plasticity in molecular sim-

lations, which significantly influences contact behaviour ( Song et

l., 2016 , 2017 .), herein just purely elastic contact is studied. 

Contact island distribution plays a vital role in thermal and

lectrical conductivity properties at the interfacial scale in granu-

ar materials ( Persson et al., 2010 ; Zhai et al., 2016b ). As shown in

ig. 6 , larger values of R r and FD bring about more scattered distri-

utions of contact stress. Increasing loads will result in larger con-

act areas by expanding existing contact islands and the formation

f new contact islands, i.e., fringing the boundary of contact zone.

his process is also accompanied by the merging of existing con-

act islands. In order to quantitatively evaluate merging and fring-

ng processes of contact islands, we implement image segmenta-

ion techniques to separate connecting contact islands, shown in

ig. 12 . The quadrilateral R3D4 elements composing the rigid flat

re considered as image pixels with greyscale values denoting the

odal contact forces. Pixels corresponding to the maximum nor-

al contact force are set to a greyscale value of 255, with a lin-

ar representation of contact forces. A contact stress contour map,

n which values denote nodal contact stresses, is drawn. Then, a

hreshold value equal to 0.3 times the maximum nodal contact

tress is chosen to separate contact islands. Finally, the number

f contacting regions forming separated contact islands can be
and α and β for various R r . 
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Fig. 12. Segmentation process of contact islands. 

Fig. 13. Distributions of normalized contact island area ( A c ) for various normalized 

contact forces F̄ : (a) Probability density distributions (PDFs); (b) Weibull distribu- 

tions. R r and FD equal to 6 × 10 −5 and 2.3, respectively; The transport purple dot 

line is just for illustration purpose, where the relations between F̄ and PDF at the 

decrease period are roughly linear; A c ,0 is the characteristic area where 37% of the 

contact regions survive. 
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btained. Furthermore, besides the case in Figs. 3 , 6 more cases

f R r and FD equal to 6 × 10 −5 and 2.3, while from different sets

f SH coefficients, are added for more universally statistical fea-

ures. In summary, Fig. 13 (a) provides the probability density func-

ion (PDF) of segmented contact island area with gradually en-

arged contact forces for 4 cases of R r = 6 × 10 −5 and FD = 2.3.

he merging of centre islands and fringing the boundary demon-

trate competitive tendency. Notably, for smaller islands ( A c /( πR 2 )

 1.5 × 10 −5 ), the PDF seems to have a consistent power-law dis-

ribution. Simultaneously, as shown in Fig. 13 (b), obtained con-

acts for varying loads contain microcontacts, of which areas nearly

onform to the same Weibull distribution over a wide range of

elf-similar length scales. By assigning the same Weibull modu-

us of 0.503 for smaller contacting islands ( L n ( A c / A c ,0 ) < 3.5), the

oodness-of-fitting coefficients (R-square values) for five conse-

uent loading stage range from 0.951 to 0.997. It is reasonable to

ostulate that the Weibull modulus is correlated to the fractal na-

ure of contacting surfaces, warranting future systematic studies

ocusing on the variations of FD and R r . 

For rough interfaces, contact area distributions can have signif-

cant implications. For interfacial electrical conduction of granu-

ar materials, for example, these microcontacts of different sizes

ransport electrical current through different conduction mecha-

isms ( Zhai et al., 2015 ), including Holm contacts, Sharvin contacts

nd electron tunnelling. When the size of contacting asperities is

omparable or smaller than the average electron mean free path,

lectrons travel ballistically across the microcontacts ( Zhai et al.,

016b ). The herein proposed power-law correlation for describing

he contact area distribution and its evolution enables the identi-

cation of the dominant conduction mechanisms across multiple

ength scales. 
.3. Normal contact stiffness 

Normal contact stiffness in Fig. 14 is calculated by the following

quation: 

 i = 

�F i 
�d i 

= 

F i +1 − F i 
d i +1 − d i 

, (28) 

here subscript i indicates the i th time step in the explicit FEM

cheme; k i is the normal contact stiffness; F i and d i represent re-

pectively the normal force acting on the rigid plate and its dis-

lacement. In DEM, it is widely accepted ( Greenwood and Tripp,

967 ; Yimsiri and Soga, 20 0 0 ; Pohrt and Popov, 2013 ) to con-

ider contact stiffness based on Hertzian contact solutions when

he overall contact force is large enough, i.e., > N 2 . The relation be-

ween contact stiffness and force in the Hertzian contact model is

 Johnson, 1985 ): 

k 

E ∗
= 

(
6 R 

∗ F 

E ∗

) 1 
3 

. (29) 

Here, the contact stiffness k is normalized by ER , and Eq.

29) can be rewritten as: 

k 

ER 

= ( 6 π) 
1 
3 ×

(
F 

EπR 

2 

) 1 
3 

. (30) 

The power law 

k 
ER = α( F 

E ∗πR 2 
) β is employed here to fit the rela-

ionship between normalized contact stiffness and forces. We con-

ider two segments, F 〈 N 1 and F 〉 50 N 1 = 0.5 N 2 . 

Figs. 15 and 16 illustrate the relationships between fitting pa-

ameters and relative roughness and fractal dimension, respec-

ively. For cases of > N 2 , the Hertzian contact solution is consid-

red applicable for the calculation of contact stiffness. Meanwhile

or cases of < N 1 , both fitting parameters are found to be influ-

nced by R r and FD . It further reveals that the application of RMS

lone to describe a rough-sphere contact is insufficient, and corre-

ations between ‘radii’, evaluated by fractal dimension, should be

ncluded. Based on the presented parametric studies, one simple

mpirical model is proposed for determining the dependence of k

n F for contacts of rough spheres: 

k 

E ∗R 

∗ = 

(
3 

√ 

6 π + R r · D f 
4 π
)

×
(

F 

E ∗πR 

∗2 

) 1 
3 +351 R r ·D f 

, (31) 

here D f denotes FD . Note this proposed correlation can be re-

uced to Hertzian contact while D f or R r approaches zero, i.e., cases

f smooth spheres. 

Fig. 17 represents the 3D plots describing α and β versus FD

nd R r , showing a reasonable goodness-of-fitting for all simula-

ion cases presented in this work. Correlations developed here can

e extended to incorporate the multiscale features in contact me-

hanics of rough surfaces, and readily to be implemented in other

umerical schemes where the inter-particle contact model is piv-

tal, such as Discrete Element Methods (DEM), under a consequent

ultiscale modelling scheme. Moreover, for applications involving
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Fig. 14. Dimensionless normal contact stiffness ( k/ ( ER )) vs. compressive force ( F/ ( E πR 2 )). Hertzian solution is given by the solid black line. The red solid and vertical lines 

denote values of N 1 and 50 N 1 (or 0.5 N 2 ), respectively. 

Fig. 15. Relationship between fitting parameters of k-F curves and R r ((a) and (b)) and FD ((c) and (d)) for F < N 1 . 

 

 

 

 

s  

d  

o  

(  

fl  

fi  

t  

s  
contact rough interfaces, the effects of hierarchical properties of

the surface structure can be estimated using the above proposed

correlation, in conjunction of measuring surface profiles. 

4. Discussion 

It is reasonable to compare the contact response from rough

spheres and nominally flat rough surfaces at low loads, as a small
ection of a sphere’s surface can be seen as a rough platen un-

er such conditions. Some reports indicate that contact responses

f rough sphere approach the results of nominally flat surfaces

 Pohrt an Popov, 2013 ). However, mapping a sphere surface to a

at without geometrical distortion is not possible. Thus, it is dif-

cult to quantitatively compare normal contact response between

hem, bridging such responses with roughness (e.g., fractal dimen-

ion, root mean square roughness and gradient, and high and low
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Fig. 16. Relationships between fitting parameters of k-F curves and R r ((a) and (b)) and FD ((c) and (d)) for F > 0.5 N 2 . 

Fig. 17. Unique power law parameters ( α in (a) and β in (b)) to denote normal contact stiffness of rough sphere contact in α and β -FD-R r spaces. 

w  

G  

B  

P

w  

s  

n  

fi  

n  

a  

f  
avelength). Despite these differences, at low loads (e.g. F < N 1 in

T model) our model states that k ∝ F D f , which is consistent with

EM simulations of contact behaviour of nominally flat surface in

ohrt and Popov (2012) : 

k 

E ∗
√ 

A 0 

= 

πD f 

10 

( 

F 

E ∗h 

√ 

A 0 

) 0 . 2567 D f 

. (32) 
here h is root mean square roughness, D f is the fractal dimen-

ion determined by PSD, and A 0 is the projection area of nomi-

ally flat platen. Compared with Eq. (31) , both models have two

tted or approximated parameters, which are 
πD f 

10 and 0.2567 D f in

ominally flat platen and R r · D f 
4 π and 351 R r · D f for the case of

 rough sphere, considering the influences of both roughness and

ractal dimension. Furthermore, two ideal conditions are covered,
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where the stiffness of a rigid flat is infinite while a smooth sphere

conforms to the Hertzian solution. 

Besides contact stiffness, it is necessary to mention the most

accepted relation between contact area and force. At low loads,

from the analytical solutions of contact behaviour of nominally flat

surfaces with spherical ( Greenwood and Williamson, 1966 ) or el-

lipsoidal asperities ( Bush et al., 1975 ), the relation between con-

tact area and force is linear, which is consistent with FEM sim-

ulations including irregular asperities considering plasticity ( Song

et al., 2016 , 2017 ) or not ( Hyun et al., 2004 ). As Fig. 9 , this relation

of spherical surfaces with higher R r and FD approximates more lin-

ear, and the influence of FD is not evidently weaker than that of

R r , because rougher sphere behaves more like nominally rough flat

platen in small scale of surface. 

5. Conclusion 

In this study we propose an effective framework for generat-

ing realistic fractal rough particle surfaces and the corresponding

FEM meshes, based on spherical harmonics (SH). The effect of local

asperity curvature is incorporated explicitly in this study, via the

term of relative roughness, the ratio between global curvature and

local roughness. Compared to the classical contact model (e.g. GT

model), the local asperity curvature (or radius) can be included by

using ultra-high SH resolution to capture multiscale morphological

features, namely the local curvature and roughness. Finite element

analyses of rough sphere contacts demonstrated the morphological

dependencies of contact behaviour, e.g., contact area and contact

stiffness, with a focus on relative roughness and fractal dimension

of surface features. The main findings and conclusions are summa-

rized as follows: 

• Contact behaviour depends strongly on surface features,

characterised here by relative roughness and fractal dimen-

sion, in the regime of relatively low loads. 
• With increasing contact pressure, competition exists be-

tween contact area merging and the formation of new small

contact islands occurring around contact area boundaries for

spheres of intermediate roughness. For spheres with highly

rough surfaces, contact islands do not tend to merge, and in-

creasing contact pressure is associated mainly with the for-

mation of new contact islands. During the contact, individual

contact islands evolve and merge, which follows a Weibull-

type distribution independent of the loading level. 
• For relatively small contact forces, the normal contact stiff-

ness of rough spheres is dependant on both fractal dimen-

sion and relative roughness and is well-described by power

law correlations, differing from Hertzian theory at low load.

The contact stiffness presents a power law behaviour with

the applied force, Empirical relations between contact stiff-

ness and load have been proposed considering topological

indices, including the relative roughness and fractal dimen-

sions. 

The numerical framework presented here for the study of

contact mechanics of rough particles warrants further investiga-

tion. More specifically, using the developed SH-mesh based FEM

schematic in this study, the simulation of contact behaviours of

rough particle with globally irregular shapes can be conducted.

In addition to the normal contact behaviours presented here, fur-

ther studies are required to elucidate relationships between parti-

cle friction behaviour and asperity level morphology. 
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ppendix I: Six kinds of particles and their high-degree SH 

escriptors 

This part mainly demonstrates the efficiency of SH-based fractal

imension ( FD ) to characterize particle morphology. Although in

he previous study ( Wei et al., 2018 ), the linear relation between

H descriptor and degree n in log-log scales has been illustrated,

nly two kinds of sand particles are contained, and they are of the

imilar size (e.g. the equivalent-volume-sphere is from 0.5 mm to

 mm). For further improving, six kinds of particles ( Bullard, 2014 ),

s shown in Fig. 3 , in concrete and with size laying in larger scopes

e.g. from sands in motor to aggerate) from Virtual Cement and

oncrete Testing Laboratory (VCCTL) are covered Fig. A.1 . 

ppendix II: Deduction of mean curvature H 

Local surface properties (e.g., maximum curvature and mini-

um curvature) are evaluated by differentials of the surface equa-

ion. The mean curvature value of a 3D surface point is the average

f its two principal curvature values. We begin from the normal

ector ( ̂  n ) of the SH-based particle surface: 

ˆ 
 = 

−→ 

X θ × −→ 

X ϕ ∣∣∣−→ 

X θ × −→ 

X ϕ 

∣∣∣ , (A-1)

here � X = ( x, y, z ) is the surface vector. The partial differentia-

ions respecting to polar coordinates write: 

 θ = 

∂X ( θ, ϕ ) 

∂θ
= 

20 0 0 ∑ 

n =1 

n ∑ 

m = −n 

c m 

n 

∂Y m 

n ( θ, ϕ ) 

∂θ
, (A-2)

 ϕ = 

∂X ( θ, ϕ ) 

∂ϕ 

= 

20 0 0 ∑ 

n =1 

n ∑ 

m = −n 

c m 

n 

∂Y m 

n ( θ, ϕ ) 

∂ϕ 

. (A-3)

According to Koenderink (1990) , coefficients of the first ( I ) and

he second ( II ) fundamental forms of surface vector are related to

urface curvatures and they are defined as 

 = d � X · d � X 

= Ed θ2 + 2 F d θd ϕ + Gd ϕ 

2 (A-4)

here 

E = 

−→ 

X θ · −→ 

X θ

F = 

−→ 

X θ · −→ 

X ϕ 

 = 

−→ 

X ϕ ·
−→ 

X ϕ ; (A-5)

https://doi.org/10.13039/501100001774
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Fig. A.1. The relations between SH descriptor D n and SH expansion degree for six 

kinds of granular materials used in concrete (adopted from Bullard (2014) ): (a): Fine 

sands; (b): Coarse aggregates. 
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I = d � X · d ̂  n 

I = Ed θ2 + 2 F d θd ϕ + Gd ϕ 

2 (A-6) 

here 

L = −−→ 

X θ · ˆ n ϕ 

 = 

(−→ 

X θ · ˆ n ϕ + 

−→ 

X ϕ · ˆ n θ

)
2 

N = −−→ 

X ϕ · ˆ n ϕ (A-7) 

Then the mean curvature value is given: 

 = 

EN + GL − 2 F M 

2 

(
EG − F 2 

) . (A-8) 

eferences 

baqus User’s Manual, R., 2016. Abaqus User’s Manual, R. Dassault Systémes Simulia

Corp, Providence, RI . 
karapu, S. , Sharp, T. , Robbins, M.O. , 2011. Stiffness of contacts between rough sur-

faces. Phys. Rev. Lett. 106 (20), 204301 . 
ndrade, J.E. , Lim, K.W. , Avila, C.F. , Vlahini ́c, I. , 2012. Granular element method

for computational particle mechanics. Comput. Methods Appl. Mech. Eng. 241,
262–274 . 

arber, J.R. , Ciavarella, M. , 20 0 0. Contact mechanics. Int. J. Solids Struct. 37 (1–2),

29–43 . 
arber, J.R. , 2003. Bounds on the electrical resistance between contacting elastic

rough bodies. Proc. Royal Soc. London. Series A 459 (2029), 53–66 . 
arrett, P.J. , 1980. The shape of rock particles, a critical review. Sedimentology 27

(3), 291–303 . 
e Bono, J.P. , McDowell, G.R. , 2018. On the packing and crushing of granular mate-
rials. Int. J. Solids Struct. In Press . 

orri-Brunetto, M. , Chiaia, B. , Ciavarella, M. , 2001. Incipient sliding of rough surfaces
in contact: a multiscale numerical analysis. Comput. Methods Appl. Mech Eng

190 (46–47), 6053–6073 . 
owman, E.T. , Soga, K. , Drummond, W. , 2001. Particle shape characterisation using

Fourier descriptor analysis. Geotechnique 51 (6), 545–554 . 
rutsaert, W. , 1975. A theory for local evaporation (or heat transfer) from rough and

smooth surfaces at ground level. Water Resour Res 11 (4), 543–550 . 

ullard, J.W. , 2014. Virtual Cement and Concrete Testing Laboratory: Version 9.5
User Guide. No. Special Publication (NIST SP)-1173 . 

ush, A.W. , Gibson, R.D. , Thomas, T.R. , 1975. The elastic contact of a rough surface.
Wear 35 (1), 87–111 . 

uzio, R. , Boragno, C. , Biscarini, F. , De Mongeot, F.B. , Valbusa, U. , 2003. The contact
mechanics of fractal surfaces. Nat Mater 2 (4), 233 . 

avarretta, I. , Coop, M. , O’SULLIVAN, C. , 2010. The influence of particle charac-

teristics on the behaviour of coarse grained soils. Géotechnique 60 (6), 413–
423 . 

hang, C.S. , Hicher, P.Y. , 2005. An elasto-plastic model for granular materials with
microstructural consideration. Int. J. Solids Struct. 42 (14), 4258–4277 . 

hiaia, B. , 2002. On the sliding instabilities at rough surfaces. J Mech Phys Solids 50
(4), 895–924 . 

iavarella, M. , Delfine, V. , Demelio, G. , 2006. A “re-vitalized” Greenwood and

Williamson model of elastic contact between fractal surfaces. J. Mech. Phys.
Solids 54 (12), 2569–2591 . 

ohen, D. , Kligerman, Y. , Etsion, I. , 2009. The effect of surface roughness on static
friction and junction growth of an elastic-plastic spherical contact. J. Tribol. 131

(2), 021404 . 
undall, P.A. , Strack, O.D. , 1979. A discrete numerical model for granular assemblies.

Geotechnique 29 (1), 47–65 . 

antu, P. , 1957. A contribution to the mechanical and geometrical study of non–
cohesive masses. In: Pros. 4th Int. Conf. Soil Mech. and Found. Eng, pp. 144–

148 . 
yson, J. , Hirst, W. , 1954. The true contact area between solids. Proc. Phys. Soc. Sec-

tion B 67 (4), 309 . 
tsion, I. , Kligerman, Y. , Kadin, Y. , 2005. Unloading of an elastic–plastic loaded

spherical contact. Int. J. Solids Struct. 42 (13), 3716–3729 . 

ao, Z. , Zhao, J. , 2013. Strain localization and fabric evolution in sand. Int. J. Solids
Struct. 50 (22–23), 3634–3648 . 

arboczi, E.J. , 2002. Three-dimensional mathematical analysis of particle shape us-
ing x-ray tomography and spherical harmonics: application to aggregates used

in concrete. Cement Concrete Res. 32 (10), 1621–1638 . 
arboczi, E.J. , Bullard, J.W. , 2017. 3D analytical mathematical models of random

star-shape particles via a combination of X-ray computed microtomography and

spherical harmonic analysis. Adv. Powder Technol. 28 (2), 325–339 . 
erig, G. , Styner, M. , Jones, D. , Weinberger, D. , Lieberman, J. , 2001. Shape analysis of

brain ventricles using spharm. In: Proceedings IEEE Workshop on Mathematical
Methods in Biomedical Image Analysis (MMBIA 2001). IEEE, pp. 171–178 . 

euzaine, C. , Remacle, J.F. , 2009. Gmsh: a 3-D finite element mesh generator with
built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng 79 (11),

1309–1331 . 
radshteyn, I.S. , Ryzhik, I.M. , 2007. Table of integrals, series, and Products. Academic

press . 

reenwood, J.A. , Williamson, J.P. , 1966. Contact of nominally flat surfaces. Proc.
Royal Soc. London. Series A. Math. Phys. Sci. 295 (1442), 300–319 . 

reenwood, J.A. , Tripp, J.H. , 1967. The elastic contact of rough spheres. J. Appl. Mech.
34 (1), 153–159 . 

reenwood, J.A. , Wu, J.J. , 2001. Surface roughness and contact: an apology. Mecca-
nica 36 (6), 617–630 . 

anaor, D.A. , Gan, Y. , Einav, I. , 2015. Contact mechanics of fractal surfaces by spline

assisted discretisation. Int. J. Solids Struct. 59, 121–131 . 
urley, R. , Marteau, E. , Ravichandran, G. , Andrade, J.E. , 2014. Extracting inter-particle

forces in opaque granular materials: beyond photoelasticity. J Mech Phys. Solids
63, 154–166 . 

yun, S. , Pei, L. , Molinari, J.F. , Robbins, M.O. , 2004. Finite-element analysis of contact
between elastic self-affine surfaces. Phys. Rev. E 70 (2), 026117 . 

yun, S. , Robbins, M.O. , 2007. Elastic contact between rough surfaces: effect of

roughness at large and small wavelengths. Tribology International 40 (10–12),
1413–1422 . 

ackson, R.L. , Green, I. , 2005. A finite element study of elasto-plastic hemispherical
contact against a rigid flat. J Tribol 127 (2), 343–354 . 

aeger, H.M. , Nagel, S.R. , 1992. Physics of the granular state. Science 255 (5051),
1523–1531 . 

ekeli, C. , 1996. Spherical harmonic analysis, aliasing, and filtering. J Geod 70 (4),

214–223 . 
ohnson, K.L. , Johnson, K.L. , 1985. Contact Mechanics. Cambridge university press . 

agami, J. , Yamada, K. , Hatazawa, T. , 1983. Contact between a sphere and rough
plates. Wear 87 (1), 93–105 . 

awamoto, R. , Andò, E. , Viggiani, G. , Andrade, J.E. , 2016. Level set discrete element
method for three-dimensional computations with triaxial case study. J. Mech.

Phys. Solids 91, 1–13 . 

oenderink, J.J. , 1990. Solid Shape. MIT press . 
uhn, M.R. , Bagi, K. , 2004. Contact rolling and deformation in granular media. Int. J.

Solids Struct. 41 (21), 5793–5820 . 
uhn, M.R. , Daouadji, A. , 2018. Multi-directional behavior of granular materials and

its relation to incremental elasto-plasticity. Int J Solids Struct 152, 305–323 . 

http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0001
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0002
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0002
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0002
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0002
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0003
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0003
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0003
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0003
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0003
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0004
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0004
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0004
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0005
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0005
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0006
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0006
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0007
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0007
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0007
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0008
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0008
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0008
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0008
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0009
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0009
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0009
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0009
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0010
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0010
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0011
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0011
http://refhub.elsevier.com/S0020-7683(20)30046-9/optX7QgEDMhYa
http://refhub.elsevier.com/S0020-7683(20)30046-9/optX7QgEDMhYa
http://refhub.elsevier.com/S0020-7683(20)30046-9/optX7QgEDMhYa
http://refhub.elsevier.com/S0020-7683(20)30046-9/optX7QgEDMhYa
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0012
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0012
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0012
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0012
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0012
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0012
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0013
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0013
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0013
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0013
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0014
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0014
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0014
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0015
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0015
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0016
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0016
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0016
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0016
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0017
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0017
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0017
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0017
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0018
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0018
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0018
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0019
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0019
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0020
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0020
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0020
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0021
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0021
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0021
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0021
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0022
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0022
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0022
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0023
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0023
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0024
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0024
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0024
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0025
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0025
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0025
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0025
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0025
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0025
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0026
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0026
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0026
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0027
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0027
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0027
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0028
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0028
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0028
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0029
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0029
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0029
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0030
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0030
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0030
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0031
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0031
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0031
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0031
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0033
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0033
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0033
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0033
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0033
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0034
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0034
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0034
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0034
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0034
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0035
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0035
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0035
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0036
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0036
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0036
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0037
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0037
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0037
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0038
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0038
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0039
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0039
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0039
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0040
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0040
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0040
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0040
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0041
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0041
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0041
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0041
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0041
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0042
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0042
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0043
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0043
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0043
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0044
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0044
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0044


68 D. WEI, C. ZHAI and D. HANAOR et al. / International Journal of Solids and Structures 193–194 (2020) 54–68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S  

 

 

S  

 

S  

S  

V  

 

V  

 

 

W  

W  

 

W  

 

X  

Y  

 

Y  

Y  

 

 

Y  

 

Y  

Y  

Z  

 

Z  

Z  

 

 

 

Z  

 

Z  
Latham, J.P. , Munjiza, A. , 2004. The modelling of particle systems with real shapes.
Philosophical Trans. Royal Soc. London. Series A: Math. Phys. Eng. Sci. 362

(1822), 1953–1972 . 
Li, S. , Yao, Q. , Li, Q. , Feng, X.Q. , Gao, H. , 2018. Contact stiffness of regularly patterned

multi-asperity interfaces. J. Mech. Phys. Solids 111, 277–289 . 
Li, X. , Yu, H.S. , Li, X.S. , 2009. Macro–micro relations in granular mechanics. Int. J.

Solids Struct. 46 (25–26), 4331–4341 . 
Li, X.S. , Dafalias, Y.F. , 20 0 0. Dilatancy for cohesionless soils. Geotechnique 50 (4),

449–460 . 

Meloy, T.P. , 1977. Fast fourier transforms applied to shape analysis of particle silhou-
ettes to obtain morphological data. Powder Technol. 17 (1), 27–35 . 

Mollon, G. , Zhao, J. , 2012. Fourier–Voronoi-based generation of realistic samples for
discrete modelling of granular materials. Granular Matter 14 (5), 621–638 . 

Mollon, G. , Zhao, J. , 2014. 3d generation of realistic granular samples based on ran-
dom fields theory and fourier shape descriptors. Comput. Methods Appl. Mech.

Eng. 279 (279), 46–65 . 

Müser, M.H. , 2018. Internal, elastic stresses below randomly rough contacts. J. Mech.
Phys. Solids 119, 73–82 . 

Nardelli, V. , Coop, M.R. , 2018. The experimental contact behaviour of natural sands:
normal and tangential loading. Géotechnique 1–15 . 

Ng, T.T. , Zhou, W. , Ma, G. , Chang, X.L. , 2018. Macroscopic and microscopic behaviors
of binary mixtures of different particle shapes and particle sizes. Int. J. Solids

Struct. 135, 74–84 . 

Nomura, W. , Ohtsu, M. , Yatsui, T. , 2005. Nanodot coupler with a surface plasmon po-
lariton condenser for optical far/near-field conversion. Appl. Phys. Lett. 86 (18),

181108 . 
Oda, M. , 1972. The mechanism of fabric changes during compressional deformation

of sand. Soils Found. 12 (2), 1–18 . 
Ovcharenko, A. , Halperin, G. , Etsion, I. , Varenberg, M. , 2006. A novel test rig for in

situ and real time optical measurement of the contact area evolution during

pre-sliding of a spherical contact. Tribol. Lett. 23 (1), 55–63 . 
Owen, P.R. , Thomson, W.R. , 1963. Heat transfer across rough surfaces. J. Fluid Mech.

15 (3), 321–334 . 
Pastewka, L. , Robbins, M.O. , 2016. Contact area of rough spheres: large scale simu-

lations and simple scaling laws. Appl. Phys. Lett. 108 (22), 221601 . 
Pei, L. , Hyun, S. , Molinari, J.F. , Robbins, M.O. , 2005. Finite element modeling of

elasto-plastic contact between rough surfaces. J. Mech. Phys. Solids 53 (11),

2385–2409 . 
Persson, B.N.J. , Bucher, F. , Chiaia, B. , 2002. Elastic contact between randomly rough

surfaces: comparison of theory with numerical results. Physical Review B 65
(18), 184106 . 

Persson, B.N. , 2006. Contact mechanics for randomly rough surfaces. Surf. Sci. Rep.
61 (4), 201–227 . 

Persson, B.N.J. , Lorenz, B. , Volokitin, A.I. , 2010. Heat transfer between elastic solids

with randomly rough surfaces. Eur. Phys. J. E 31 (1), 3–24 . 
Pohrt, R. , Popov, V.L. , 2012. Normal contact stiffness of elastic solids with fractal

rough surfaces. Phys. Rev. Lett. 108 (10), 104301 . 
Pohrt, R. , Popov, V.L. , 2013. Contact mechanics of rough spheres: crossover from

fractal to hertzian behavior. Adv. Tribol. 2013 . 
Petrovic, A.M. , Siebert, J.E. , Rieke, P.E. , 1982. Soil bulk density analysis in three di-

mensions by computed tomographic scanning 1. Soil Sci. Soc. Am. J. 46 (3),
445–450 . 

Quevedo, R. , Mendoza, F. , Aguilera, J.M. , Chanona, J. , Gutiérrez-López, G. , 2008. De-

termination of senescent spotting in banana (Musa cavendish) using fractal tex-
ture Fourier image. J. Food Eng. 84 (4), 509–515 . 

Roscoe, K.H. , Schofield, A. , Wroth, C.P. , 1958. On the yielding of soils. Geotechnique
8 (1), 22–53 . 

Rubinstein, S.M. , Cohen, G. , Fineberg, J. , 2004. Detachment fronts and the onset of
dynamic friction. Nature 430 (7003), 1005 . 

Russ, J.C. , 2013. Fractal Surfaces. Springer Science & Business Media . 

Song, H. , Van der Giessen, E. , Liu, X. , 2016. Strain gradient plasticity analysis of elas-
to-plastic contact between rough surfaces. J. Mech. Phys. Solids 96, 18–28 . 
ong, H. , Vakis, A.I. , Liu, X. , Van der Giessen, E. , 2017. Statistical model of rough sur-
face contact accounting for size-dependent plasticity and asperity interaction. J.

Mech. Phys. Solids 106, 1–14 . 
Sharp, J.S. , Poole, S.F. , Kleiman, B.W. , 2018. Optical measurement of contact forces

using frustrated total internal reflection. Phys Rev Appl 10 (3), 034051 . 
hearing, P.R. , Gelb, J. , Brandon, N.P. , 2010. X-ray nano computerised tomography of

sofc electrodes using a focused ion beam sample-preparation technique. J Eur
Ceram Soc 30 (8), 1809–1814 . 

hen, L. , Farid, H. , McPeek, M.A. , 2009. Modeling three-dimensional morphological

structures using spherical harmonics. Evolution 63 (4), 1003–1016 . 
un, Q. , Zheng, Y. , Li, B. , Zheng, J. , Wang, Z. , 2019. Three-dimensional particle size

and shape characterization using structural light. Géotechnique Lett. 1–22 . 
Taylor, D.W. (1948). Fundamentals of soil mechanics (Vol. 66, No. 2, p. 161). LWW. 

akis, A .I. , Yastrebov, V.A . , Scheibert, J. , Nicola, L. , Dini, D. , Minfray, C. , Molinari, J.F. ,
2018. Modeling and simulation in tribology across scales: an overview. Tribol.

Int. 125, 169–199 . 

iggiani, G. , Lenoir, N. , Bésuelle, P. , Di Michiel, M. , Marello, S. , Desrues, J. , Kret-
zschmer, M. , 2004. X-ray microtomography for studying localized deformation

in fine-grained geomaterials under triaxial compression. Comptes Rendus Mé-
canique 332 (10), 819–826 . 

adell, H. , 1932. Volume, shape, and roundness of rock particles. J. Geol. 40 (5),
443–451 . 

eber, B. , Suhina, T. , Junge, T. , Pastewka, L. , Brouwer, A.M. , Bonn, D. , 2018. Molec-

ular probes reveal deviations from Amontons’ law in multi-asperity frictional
contacts. Nat Commun 9 (1), 888 . 

ei, D. , Wang, J. , Nie, J. , Zhou, B. , 2018. Generation of realistic sand particles with
fractal nature using an improved spherical harmonic analysis. Computers and

Geotechnics 104, 1–12 . 
u, Y. , Rostami, A. , Jackson, R.L. , 2015. Elastic contact between a geometrically

anisotropic bisinusoidal surface and a rigid base. J Tribol 137 (2), 021402 . 

ang, J. , Luo, X.D. , 2015. Exploring the relationship between critical state and par-
ticle shape for granular materials. Journal of the Mechanics & Physics of Solids

84, 196–213 . 
astrebov, V.A. , 2013. Numerical Methods in Contact Mechanics. John Wiley & Sons .

astrebov, V.A. , Cailletaud, G. , Proudhon, H. , Mballa, F.S.M. , Noël, S. , Testé, P. ,
Houzé, F. , 2015, October. Three-level multi-scale modeling of electrical contacts

sensitivity study and experimental validation. In: 2015 IEEE 61st Holm Confer-

ence on Electrical Contacts (Holm). IEEE, pp. 414–422 . 
astrebov, V.A. , Anciaux, G. , Molinari, J.F. , 2015. From infinitesimal to full contact

between rough surfaces: evolution of the contact area. Int J Solids Struct 52,
83–102 . 

astrebov, V.A. , 2019. The elastic contact of rough spheres investigated using a de-
terministic multi-asperity model. J. Multiscale Modelling 10 (01), 1841002 . 

imsiri, S. , Soga, K. , 20 0 0. Micromechanics-based stress-strain behaviour of soils at

small strains. Geotechnique 50, 559–571 . 
hai, C. , Hanaor, D. , Proust, G. , Gan, Y. , 2015. Stress-dependent electrical contact re-

sistance at fractal rough surfaces. J. Eng. Mech. 143 (3), B4015001 . 
Zhai, C. , Gan, Y. , Hanaor, D. , Proust, G. , Retraint, D. , 2016a. The role of surface struc-

ture in normal contact stiffness. Exp. Mech. 56 (3), 359–368 . 
hai, C. , Hanaor, D. , Proust, G. , Brassart, L. , Gan, Y. , 2016b. Interfacial electro-me-

chanical behaviour at rough surfaces. Extreme Mech. Lett. 9, 422–429 . 
hai, C. , Herbold, E.B. , Hall, S.A. , Hurley, R.C. , 2019. Particle rotations and energy

dissipation during mechanical compression of granular materials. J. Mech. Phys.

Solids 129, 19–38 . 
Zhao, S. , Evans, T.M. , Zhou, X. , 2018. Shear-induced anisotropy of granular materi-

als with rolling resistance and particle shape effects. Int. J. Solids Struct. 150,
268–281 . 

hao, S. , Zhao, J. , 2019. A poly-superellipsoid-based approach on particle morphol-
ogy for DEM modeling of granular media. Int .J. Numer. Anal. Methods Ge-

omech. In Press . 

heng, J. , Hryciw, R.D. , 2017. Soil particle size and shape distributions by stereopho-
tography and image analysis. Geotech. Testing J. 40 (2), 317–328 . 

http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0045
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0045
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0045
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0046
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0046
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0046
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0046
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0046
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0046
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0047
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0047
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0047
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0047
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0048
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0048
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0048
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0049
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0049
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0051
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0051
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0051
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0052
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0052
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0052
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0053
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0053
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0054
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0054
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0054
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0055
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0055
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0055
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0055
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0055
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0056
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0056
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0056
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0056
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0057
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0057
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0058
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0058
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0058
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0058
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0058
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0059
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0059
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0059
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0060
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0060
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0060
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0061
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0061
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0061
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0061
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0061
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0062
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0062
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0062
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0062
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0063
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0063
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0064
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0064
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0064
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0064
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0065
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0065
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0065
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0066
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0066
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0066
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0067
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0067
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0067
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0067
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0068
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0068
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0068
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0068
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0068
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0068
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0071
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0071
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0071
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0071
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0072
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0072
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0072
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0072
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0073
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0073
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0069
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0069
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0069
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0069
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0070
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0070
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0070
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0070
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0070
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0074
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0074
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0074
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0074
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0075
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0075
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0075
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0075
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0076
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0076
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0076
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0076
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0077
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0077
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0077
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0077
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0077
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0077
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0078
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0078
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0078
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0078
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0078
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0078
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0078
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0078
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0079
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0079
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0079
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0079
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0079
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0079
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0079
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0079
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0080
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0080
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0081
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0081
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0081
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0081
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0081
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0081
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0081
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0082
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0082
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0082
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0082
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0082
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0083
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0083
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0083
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0083
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0084
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0084
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0084
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0085
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0085
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0086
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0086
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0086
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0086
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0086
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0086
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0086
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0086
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0087
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0087
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0087
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0087
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0088
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0088
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0089
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0089
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0089
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0090
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0090
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0090
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0090
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0090
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0091
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0091
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0091
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0091
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0091
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0091
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0092
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0092
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0092
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0092
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0092
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0092
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0093
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0093
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0093
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0093
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0093
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0094
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0094
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0094
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0094
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0095
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0095
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0095
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0096
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0096
http://refhub.elsevier.com/S0020-7683(20)30046-9/sbref0096

	Contact behaviour of simulated rough spheres generated with spherical harmonics
	1 Introduction
	2 Methodology
	2.1 Ultra-high spherical harmonics (SH) for morphology features
	2.2 FEM model

	3 Results and discussion
	3.1 Contact pressure
	3.2 Contact area
	3.3 Normal contact stiffness

	4 Discussion
	5 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	Appendix I: Six kinds of particles and their high-degree SH descriptors
	Appendix II: Deduction of mean curvature H
	References


