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Abstract Surface morphology plays a crucial role in friction between two contacting geomaterial surfaces,
yet many questions remain unanswered regarding how detailed frictional responses deviate from analytical
solutions for smooth surfaces due to the presence of roughness. In this study, we revisit the Cattaneo‐Mindlin
problem for contacts between two fractally rough elastic or elasto‐plastic spheres generated based on ultra‐high
degree (e.g., up to 2,000) spherical harmonics with the corresponding wavelength less than a thousandth of the
mean grain diameter. Transverse contacts are simulated by finite element method, validated by the extended
Cattaneo‐Mindlin solution to full slide regime for smooth sphere contacts. Extensive simulations are conducted
to study contacts between two rough spheres with various surface geometries, micro friction coefficients,
normal contact distances, relative roughness, fractal dimensions, and wavelength ranges. Out results indicate
that: (a) the new analytical solution can approximately predict the macro contact response except for extremely
high relative roughness and narrow wavelength range; (b) deviations induced by roughness from smooth sphere
contacts can be neutralized by plasticity, high normal contact interference, and high micro friction coefficient;
and (c) fractal dimension impacts frictional contacts less than relative roughness. The main cause of these
phenomena can be credited to the underlying microscale contact information. Contact area and stress
distributions and their evolutions provide concrete evidence of these observed behavior. This work provides a
pathway for applying computational contact mechanics to many geophysical fields, such as the asperity model
in earthquake science and the mechanics of granular materials.

Plain Language Summary Geophysical bodies, such as faults, rocks, and grains, exhibit surface
roughness across length scales. Contacts between rough surfaces are usually simplified to a rough‐to‐flat contact
scenario. To release these strong assumptions, for the first time, extensive finite element simulations are
conducted for transverse contacts between two rough grains. Particularly, grain roughness is controlled by ultra‐
high degree spherical harmonics, which enables depicting surfaces of diverse grains from silica sands up to
asteroids. Our results highlight the importance of surface features in frictional contacts, and indicate that the
effects of roughness can be alleviated by the plasticity, contact conditions, and high intrinsic friction coefficient.
Furthermore, fractality, quantifying how much the surface fluctuates over length scales, impacts frictional
contacts less than roughness amplitude. This study provides a pathway for applying computational contact
mechanics to many geophysical applications involving frictional contacts, such as asperity models in earthquake
science and mechanics of granular materials.

1. Introduction
Surfaces of geological materials, such as sand grains, rocks, and faults, usually present roughness over several
orders of magnitude of length scales (Candela et al., 2012). Assessing what happens on the interface between such
two rough surfaces is crucial for diverse geophysical applications, and has become a focal point of earthquake
science in recent years, especially with the rapid development of experimental and numerical capacity and ac-
curacy. Contact mechanics of rough surfaces considering asperity shape, size, and position can be traced back to
the pioneering work by Greenwood andWilliamson (1966) for open half space, and Greenwood and Tripp (1967)
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for closed curve surface. These analytical solutions are for purely elastic material with individual asperity deemed
a half ellipsoidal cap (Bush et al., 1975), enabling the application of classical Hertzian contact solution (Hert-
zian, 1881). The complex morphologies of the contacting surfaces are often considered with simplified param-
eters, such as fractal dimension, root mean square roughness, asperity density and average radius, and these multi‐
asperity models (Carbone & Bottiglione, 2008; Ciavarella et al., 2006; Kadin et al., 2006; Nayak, 1971; Xu
et al., 2022) in line with the classical GW model only performs well at short contact interference. B. N. Pers-
son (2006) proposed a contact theory based on the concept of magnification, where rough surfaces are considered
to demonstrate gradual evolutions down to fine scales, thus the overall contact is a sum of contacts at every
magnification. This treatment is based on the assumption that the interface is fully contacted, which is more
accurate for contact problems with large contact interference. It is worthwhile to mention that Guo et al. (2019)
unified solutions of classical GW model and Persson's theory, which have been validated by results of molecular
dynamics (MD) from Yang and Persson (2008a, 2008b) and experiments from Lorenz et al. (2010) and Lor-
enz (2012). Most of the aforementioned models originated from contact mechanics have been widely adopted for
the contact between the inhomogeneous in geophysical research, that is, the Hertzian contact for acoustic waves in
granular materials (Melosh, 1979), and GW theory for rock fracture or joint contact related phenomenon
including closure (Brown & Scholz, 1985b; Walsh & Grosenbaugh, 1979), porosity influenced conductivity
(Walsh & Brace, 1984), and anisotropic force‐deformation behavior (Misra, 1999). The more recently proposed
Persson theory has also been utilized to investigate the bulk compressibility of Bentheim sandstone (L. Wang
et al., 2020) and the aperture‐determined permeability of discrete fracture networks (De Dreuzy et al., 2012).

Additionally, existing analytical contact models mostly depart from the strong assumption that the contact be-
tween two non‐adhesive elastic frictionless rough surfaces can be deemed as the contact between one rigid flat and
one rougher surface with the same composite roughness and elastic modulus (Barber, 2003). If zi,j is the height
over the arithmetic mean of nominally flat surface at the position of (i, j), the composite roughness (zcij

) is defined
as: zcij

= zlij
+ zuij

, where the subscript l and u represent “lower” and “upper” surfaces, respectively. These factors
conceptually block the application of analytical methods to frictional rough‐rough contact rich in asperity
interplay like squeezing, plowing, and sliding (Molinari et al., 2018; Song et al., 2015). The direct evidence is
experimentally dedicated by Hsu et al. (2018), wherein the friction coefficient at the contact between a rough
sphere and a rough flat is much different from that of identical composite roughness between a smooth sphere and
a rougher flat. Such a strong assumption could be more ill‐posed in geophysical applications, as in this field the
surfaces on which the contact is focused are mainly formed from the two sides of the fractured bulk; the contacted
surfaces are nearly mated over specific wavelength (Brown & Scholz, 1985a). In the manner of approximating
fractured surface height variations using a sum of the Fourier series (Brown & Scholz, 1985b), the distance, over
which sine and cosine waves at the specific Fourier series degree repeat, is called wavelength. Via this simpli-
fication, the tortuosity of apertures is compressed into zcij

, which is short and could lead to a large tortuosity.
Certainly, in this framework the permeability prediction is not rigorous. As early in 1994, Yoshioka (1994) has
noticed the disagreements with and without the simplifications in geophysical problems, that is, elastic behavior
between contacting rough surfaces. Up to now, analytical solutions are still facing challenges to appropriately
incorporate deformations and the interplay among asperities (Afferrante et al., 2012; S. Li et al., 2018), with
further difficulties when (size‐dependent) plasticity (Song et al., 2016, 2017) comes into play. Further, analytical
solutions suffer from the geometrical coupling between the normal and tangential elastic field for the contact
between two dissimilar surfaces. For such situations, numerical simulations, such as finite element methods
(FEM) in this study, are one of effective tools currently available to fundamentally study friction between two
deformable bodies.

Moreover, only a few studies focused on friction contact between isotropically rough surfaces, which is more
urgent considering that most geomaterial surfaces are of, if not completely, highly isotropic fractality. These
existing studies mainly consider materials with rheological behavior, such as viscoelasticity (Putignano
et al., 2019) and adhesion (Lengiewicz et al., 2020; Sahli et al., 2019). Strong anisotropy is observed in the
deformation and displacements of contact clusters, and the anisotropy is found to be linked to differences between
leading and trailing edges of microcontacts (Sahli et al., 2019). In most friction‐related studies, the contact area is
the main “state variable.” However, it is widely admitted that tracking contact area is insufficient in depicting
friction‐related phenomena (Q. Li et al., 2011), Dillavou and Rubinstein (2018, 2020) challenged the traditional
equivalence between contact area and static friction coefficient by experimentally showing that a static shear load
could accelerate frictional aging rather than the aging rate of the real contact area. More information at the

Visualization: Deheng Wei
Writing – original draft: Deheng Wei
Writing – review& editing:DehengWei,
Chongpu Zhai, Hengxu Song,
Ryan Hurley, Shaoqi Huang, Yixiang Gan,
Minglong Xu

Journal of Geophysical Research: Solid Earth 10.1029/2023JB028361

WEI ET AL. 2 of 31



microscale, such as normal contact and frictional forces or stresses, deserves more attention. This information is
difficult to obtain in experiments, but conveniently achieved in numerical modeling.

First‐principles calculations of frictional forces for realistic systems are generally impossible. The reason is that
friction is usually an interfacial property, often determined by the last few uncontrolled monolayers of atoms or
molecules at the interface. Thus, in continuum scale simulations some ad‐hoc empirical laws at both the interface
and the bulk (such as the minimal case of Amonton‐Coulomb friction and isotropic elasticity) must be dedicated
to the underlying mechanisms inherent in the studied frictional contacts. Among these simplifications for fric-
tional contact problems, partial‐to‐full sliding between two identical elastic smoothed spheres with the Coulomb
type friction is one of the most concerning problems for its fundamental analogy to real contact behavior. The very
first analytical solution to this end was developed, independently, by Cattaneo (1938) and Mindlin (1949). They
derived the model for the partial‐to‐full sliding evolution at the contact between two elastic spheres, referring to
Hertzian solution (Hertzian, 1881) for the normal compression. During the tangential motion, the stick zone
formed by normal contact pressure shrinks from its circular edge of lower stress, while the slide zone evolves in an
annulus shape from this edge toward the contact center and finally occupies the whole contact region, after which
the full slide starts. The linear elastic material enables the calculation of the shear traction distribution by su-
perposition of two solutions: one is for limiting frictional traction distribution; the other is a negative correction
equal to the product of dry Coulomb friction coefficient and normal contact pressure distribution on the evolu-
tionary stick zone. Later on, more complicated loading scenarios with varying normal and tangential forces have
been studied by Mindlin and Deresiewicz (1953). More generalized results on contact geometry have been
achieved by Jäger (1995, 1998), independently followed by Ciavarella (1998a, 1998b). The Cattaneo‐Mindlin
problem has attracted significant attention from geophysical disciplines, such as the asperity model in earth-
quake science (Beck & Ruff, 1984; Gao, 1989) and discrete element method (DEM) in granular materials
(Cundall & Strack, 1979). However, the full slide regime following the partial slide regime, in the contact between
two finite sized spheres, has been seldom studied. Moreover, as aforementioned simplifying an asperity contact to
a spherical contact with an effective radius significantly eases the analytical investigations on contacts between
rough surfaces; at the same time, the simplification might be too ideal to deal with practical problems where
roughness is inevitable on both surfaces of contact pairs, and on different length scales. Thus, it is of great
importance to study partial‐to‐full slide behavior between two rough spheres, especially considering the fractal
nature of the roughness instead of GW type roughness on a single‐length scale.

In this paper, we first extended the Cattaneo‐Mindlin solution to full slide regime for smooth sphere contacts; then
it was validated by FEM simulations and compared with contacts between two rough spheres of various simu-
lation parameters. To the best of our knowledge, the partial‐to‐full sliding behavior between two deformable,
isotropically rough spheres with multiscale (fractal) roughness features is numerically studied for the first time.
The effect of the roughness and elasto‐plastic material properties on the macroscopic frictional responses was
systematically investigated, focusing on the departures from smooth sphere contacts. In this study, von Mises
plasticity is implemented due to its simple formulations and extensive applications in geomaterials (Borja, 2013).
The reasons for considering plasticity in geomaterials can be categorized into three aspects: (a) nearly all macro
geomaterials are highly heterogeneous composites, such as sandy soils (comprising over 90% of quartz), which
exhibit extensive internal microcracks. Inelastic deformations are primarily caused by the formations of new
microcracks and sliding motions within them; (b) in nature, geomaterial surfaces are typically coated with clayey
soils, leading to significant plastic deformations at the same contact point only after several rounds of cyclic
normal compression between two silica sand particulates (Kasyap et al., 2021); (c) the mechanical deformation
behavior of each component in rock composites could be described by the plasticity model (Sly et al., 2023). In
our FEM simulations for rough sphere contacts the stress in some elements could approach the yield point. The
remainder of this paper is organized as follows. In Section 2, the Cattaneo‐Mindlin solution for frictional contact
between two smooth elastic spheres is extended to full slide regime. Section 3 is for a detailed description of the
FEM scheme. Therein, how to generate a fractal‐shaped sphere using ultra‐high degree spherical harmonics (SH),
as well as its FEM mesh, is first given. Mutual verifications between the FEM framework and the extended
Cattaneo‐Mindlin solution are subsequently conducted via comparing results from numerical and analytical
approaches. Simulation results of contact and sliding between two rough spheres focused on gigantic dominant
factors are given in Section 4. A discussion of the asperity micromechanics at the macro contact interface, as well
as some geophysical applications, is made in Section 5 and conclusions are summarized in Section 6.
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2. Extended Cattaneo‐Mindlin Problem
In this section, we focus on extending the classical Cattaneo‐Mindlin solution to full slide regime under the
constant normal contact distance.

The classical Cattaneo‐Mindlin problem involves two loading steps: Step 1 is the normal contact process between
two spheres while Step 2 is the tangential loading between two spheres while keeping the normal contact force
(resulting from Step 1) a constant. Here, instead of the constant normal force Fz, we adopt the boundary condition
of a constant contact distance (normal displacement) h0. The primary reason is that in order to achieve a constant
Fz, a feedback loop is required during the tangential loading process when the normal contact force would
naturally evolve; by contrast, a constant normal displacement is a parameter easy to control experimentally.
Figure 1 schematically shows the quasi‐static loading process, including the contact process, tangential loading
process (the so‐called partial‐to‐full sliding regime in Cattaneo‐Mindlin problem), and the full slide regime (our
extension of the Cattaneo‐Mindlin problem).

Without loss of generality, classical solutions to the Cattaneo‐Mindlin problem are briefly reviewed in Appen-
dix A. There, we also show that Cattaneo‐Mindlin solution is still suitable in the partial sliding regime with a
constant normal displacement as the boundary condition. The key to analytically solving forces in the full slide
regime of contact between elastic spheres is the projection (Sps) of the x axis on evolutionary slide displacement
(δc) formed in the partial‐to‐full sliding regime. The overall tangential displacement, s, is the sum of Sps and the
subsequent sliding displacement, Sfs,

s =
δc

cos α⏟⏞⏞⏟
Sps

+ Zh · tan α
⏟⏞⏞⏟

S f s

, (1)

where α is the angle between the x axis and the line connected sphere centers in the full slide regime, Zh= 2R − h0
is the projection of the distance between two spheres on z axis. Note that δc always evolves in a direction parallel
to the contact plane, as shown in the right inset schematic in Figure 1. The start and the end of the full slide regime
can be also indicated by δc in addition to s, by

δc =
⎧⎨

⎩

δsu, s = δsu

0, s =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2R)2 − Zh2
√ . (2)

Here, δsu= μsCMh0, whereCM =
2 − v

2(1 − v) is a function of Poisson's ratio, v, and called the Cattaneo‐Mindlin ratio, is
the ultimate tangential slide displacement when the full slide happens, of which details can be found in Ap-
pendix A. Evidently, the traction Fx(s) on the upper sphere is related to the normal contact force N(α) on the
interface and the projection of z axis on the reaction force of the upper sphere. According to the following set of
equilibrium equations,

Figure 1. Schematic of the boundary conditions for the extended Cattaneo‐Mindlin problem under constant normal contact
distance. The two spheres are first compressed to a normal displacement h0 followed by a tangential shear of displacement s
under constant normal displacement. The insets show the typical contact configuration during different regimes. The
subscripts “sk,” “ps,” and “fs” mean stick, partial sliding, and full sliding, respectively. R is the radius, Zh the distance
between two sphere centers, and δc the evolutionary slide displacement.
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⎧⎪⎪⎨

⎪⎪⎩

∑
Fx

= Fx(s) − μsN(α) cos α + N(α) sin α = 0

∑
Fz

= Fz(s) − μsN(α) sin α − N(α) cos α = 0
, (3)

Fx(s) and Fz(s) can be expressed as

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Fx(s) = N(α)
sin(− α + β)

cos β

Fz(s) = N(α)
cos(α − β)

cos β

, β = tan − 1 μs. (4)

When the full slide happens, the overall contact overlap, h, can also be separated into two parts: one (hfs) is
induced by the movement of the upper sphere center in the full slide regime; the other (hps) is induced by the
inclination of the contact interface formed in the partial‐to‐full sliding regime. Thus, we arrive at

h = 2R −
Zh

cos α⏟̅̅⏞⏞̅̅⏟
hps

− δc · tan α⏟⏞⏞⏟
h f s

. (5)

To eliminate δc, Equations 1 and 5 are combined and then, together with Equation A1, imported into Equation 4,

Fx(s) =
4
3
E∗R∗1

2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− (s cos α − Zh sin α) tan α + 2R −
Zh

cos α⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
h

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

3
2

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
N

sin(− α + β)
cos β

, s > δsu. (6)

Then combined with Equation A8, the extended Cattaneo‐Mindlin solution to the full slide regime is

Fx(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
3
E∗R∗1

2h0
3
2

⏟̅⏞⏞̅⏟
Fz(s)

μs[1 − (1 −
s
δsu
)

3
2

], s ≤ δsu

4
3
E∗R∗1

2[− (s cos α − Zh sin α) tan α + 2R −
Zh

cos α
]

3
2 sin(− α + β)

cos β
, s > δsu

. (7)

In next sections, the above extended solution in Equation 7 would be validated by FEM simulations. Here, we
have to stress that some, but not all, relevant assumptions in Hertzian normal contact and Cattaneo‐Mindlin
solutions still hold in this study, as our study is an extension of them. For example, we do not limit to two
identical elastic spheres by using two contacted rough spheres with the same roughness parameters but diverse
roughness; and the shear stress distribution is of no necessity to be everywhere parallel to the displacement. In line
with Hertzian normal contact, internal stress is also ignored. The contact and friction models in FEM are outlined
in Appendix C2. The Amonton‐Coulomb friction law is also used, wherein the shear stress of any slide contact
point is equal to the product of a constant coefficient of friction and normal stress, to avoid the unrealistic infinite
shear stress at the edge of the contact interface associated with the no slide assumption of tangential loading.

Considerable controversy persists regarding the most suitable friction law in geophysics (Bhattacharya
et al., 2022). For example, the two mostly used versions, see the Aging law (Dieterich, 1979) and the Slip law
(Ruina, 1983), of common empirical rate and state dependent friction (RSF) law offer opposing views of the
importance of slip for friction evolution via defining different state functions. Even the common sense that the
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dynamic friction coefficient is smaller than the maximum static friction coefficient is challenged by Scholtz and
collaborators (Biegel et al., 1992; Boitnott et al., 1992; W. Wang & Scholz, 1995) who conducted rotary shear
tests on granite and found the dynamic friction coefficient is almost identical to the maximum static friction
coefficient. This is consistent with the results of direct shear tests on gabbro conducted by Marone and
Cox (1994). The difference between the two types of friction stress, called the stress drop, ∆τp, is of significant
importance in earthquake science (Madariaga, 1979) and directly involved in calculating seismic moment,M0, for
a circular crack with the radius equal to R (Dublanchet et al., 2013): M0 =

16
7 ∆τpR

3. Note that all above
phenomenological friction laws aim to approximate the macro mechanical response, which is a collective
behavior of individual contacting asperities on the rough contact interface. Starting from the minimal mode
considering only material elasticity and Coulomb friction of single rough asperities (such as the whole rough
sphere deemed as one asperity on the rough surface), and progressively incorporating additional mechanisms such
as adhesion, fracture, and abrasion, may help elucidate the mismatches among various friction laws.

There are two reasons to adopt the Amonton‐Coulomb friction law at specific contact points in our FEM schema:
(a) in the classical Cattaneo‐Mindlin problem which is aimed to be extended to the post‐full‐slide regime and
rough spheres, the friction force is limited by non‐adhesive Amonton‐Coulomb friction law; (b) in large‐scale
molecular simulations in Mo et al. (2009), Amonton‐Coulomb friction law is found for non‐adhesive contact
at single asperity, nevertheless rate and state friction law is found in plenty of single contacts in experimental
studies (Q. Li et al., 2011; S. Li et al., 2020). Note that the rate and state friction law, although computationally
too much to handle, can be readily imported into the interface contact law in FEM and could influence our results
much; in the classical Cattaneo‐Mindlin problem of interest in this study, rate and state effects are not
considered.

3. Numerical Methods
In this study, we implement FEM to simulate contacts between smooth or rough spheres. All simulation pa-
rameters are summarized in Appendix B, while detailed descriptions of FEMmodel including material properties
and contact and friction model, as well as some necessary validations of FEM itself, are provided in Appendix C.
The boundary conditions have been schematically illustrated in Figure 1. In Step 1, the higher half of the upper
sphere first is constrained to be only able to go down along z direction by a constant acceleration up to half of the
desired normal contact distance, followed by a continuous decrease of the velocity down to zero. Then, positions
of both two spheres will be kept for a short time of period, for better elimination of inertial effects in explicit FEM
scheme (see Figure C3 in Appendix C). Notably, the final normal contact distance, h0, of rough sphere contact is
calculated via distances between their mean radial heights, identical to that of the corresponding smoothed sphere
contact, 2R − Zh, as shown in Figure 1. During Step 2, the higher half of the upper sphere is only allowed to move
toward x direction with the same acceleration and maximum velocity as those of movements toward z direction in
Step 1. Then, the upper sphere will tangentially move along a linear trajectory at a constant speed until the
separation of the two spheres.

In this section, how rough spheres with isotropic roughness are generated is first illustrated using ultra‐high
degree Spherical Harmonics (USH), followed by the further implementation in FEM mesh for the balance be-
tween computational cost and efficiency to depict enough morphology features. Validations are also provided by
comparing FEM results with solutions of smooth sphere contacts both in partial and full sliding regimes.

3.1. Rough Sphere Surface and Finite Element Mesh

At large length scales up to asteroids, SH based spectral analysis has been frequently used to quantify fractal
dimension of long‐known and newly found asteroids, such as Earth, Moon, Venus, and Mars (Turcotte, 1987),
and Bennu (Daly et al., 2020); at small length scales down to particles, SH has also been implemented to measure
the morphology features of silica grains, such as various engineering particulates in Figure 2a. Compared with
other methods to generate rough flat surfaces, such as the Weierstrass‐Mandelbrot function (Ciavarella
et al., 2006; Komvopoulos & Yang, 2006) and power spectrum (PS) density (Joe et al., 2018; Monti et al., 2022),
the advantage of SH is that the surface roughness built upon an initially smooth sphere. In this study, spheres with
isotropic roughness are generated based on USH to depict very fine grain morphology using extremely high SH
degrees up to 2,000 with the corresponding wavelength equal to about 0.003r. To bypass the underflow phe-
nomena in the Legendre series in SH function of ultra‐high degree, a recursion formula is applied (Wei
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et al., 2020), instead. Here we only briefly introduce the key parameters that are varied in this study and newly
derive the exact relation between root mean square roughness and PS in SH in Appendix D. All generated fractal
rough grains as well as relevant codes are available at our Zenodo repository (Zhai, 2023).

As in Figure 2a, the linear relations between PS, Ln, and SH degree, n, in log‐log scale are encountered widely in
natural grain shapes, that is, Dn ∝ nβ, where Dn is the normalized PS by D0, Dn = Ln /D0, β = − 2H is the slope of
the regression plot of log (Dn) versus log (n), andH is the Hurst coefficient related to the Fractal Dimension (Df) of
Fourier transformation by the following expression (Russ, 2013):

Df = 3 − H =
6 + β
2

. (8)

Further, the relative roughness, Rr, indicating how the rough grain is globally distinct from the sphere with the
radius equal to the mean radial length, is defined as the ratio of root mean square roughness, Sq, to mean radius
length, r,

Rr =
̅̅̅̅̅̅̅
Msr

√

R0
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
4π∑∞

n=1∑n
m=− n

⃦
⃦cmn

⃦
⃦2

√

c00 · Y
0
0(θ, φ)

≈
Sq
r
. (9)

where ||·|| is the L2 norm, cmn are the SH coefficients of degree n and order m, θ ∈ [0, π] and φ ∈ (0, 2π] are the
latitudinal and longitudinal coordinates respectively, Ymn (θ, φ) is the SH function, R0 is the c0‐determined sphere,
andMsr = Sq2 is the mean square roughness. Figure 2b demonstrates the consistency between our newly derived
relation, between Ln and Sq (see Equation D6 in Appendix D), and results from randomly generated rough grain
shapes with various of D2 and Df. More details about the way randomness are introduced in the SH for surface
generation are provided in Appendix D.

In FEM simulation of the fractal rough surface, the balance between the computational cost and the shortest
wavelengths, λs, of the rough surface is an important issue as has been intensively discussed in Yastrebov
et al. (2012, 2015, 2017a, 2017b). The fractal feature is of course necessarily truncated by the FEM mesh size, l.
According to the Jean's formula,

Figure 2. (a) Pictures of nine types of natural grains and the corresponding relations between the average of normalized power
spectrum (PS), Dn, and spherical harmonics expansion degree, n, in the log‐log scale. Scale bars for I to III and IV to IX are
1 cm and 1 mm. I to VI are MA106A‐1, MA107‐6, MA114F‐3, MA111‐7, MA99BC‐5, and MA106B‐4, taken from Virtual
Cement and Concrete Testing Laboratory (Bullard, 2014). VII, Leighton Buzzard sand, and VIII, highly decomposed granite,
are fromWei et al. (2018), while IX, Ottawa sand, is from Erdoğan et al. (2017). (b) Relations between the cumulative square
of the PS,∑15

n=1Ln
2, and mean square roughness, Sq2, for virtually generated irregular grain shapes of various of Df and D2.
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λ(n) =
2πr

n + 0.5
, (10)

where λ(n) is the wavelength for the waves of degree n for a unit sphere. Ideally, λ(nmax) = λs ≫ l, however, the
computational cost limits this application. It would be more rigorous to put λ(nmax) ≥ 2l, as suggested in Table 1
in Yastrebov et al. (2015), who summarized the relationship between the shortest wavelength, λs and l of recent
numerical studies for contact behavior of nominally flat rough surfaces. In this study, we set the ratio
nmax = 2,000.

In order to generate a rough sphere for FEM simulations, a graded spherical surficial triangular mesh is first
generated in Matlab environment by distributing surficial nodes on three different mesh zone according to their
mesh sizes, including fine mesh zone, transition zone, and coarse mesh zone, as is shown in Figure 3b, of which
the FEMmesh is available at our Zenodo repository (Zhai, 2023). The mesh sizes at the boundaries between these
three zones are 0.0015r, 0.1r, and 0.4r, respectively. Note that the mesh size transitions gradually from the
specified mesh size of the coarse region to that of the fine region. The mesh sizes at the boundaries are exactly the
same as the given values. Via this manifestation, λ(nmax = 2, 000) = 2π

2, 000+0.5 > 0.0015 × 2.

The triangular mesh is selected for its strong capability of depicting complicated shapes compared with tetragonal
mesh. After initial distribution, the randomly distributed nodes on the sphere surface are moved with iterations for
high mesh quality, except for nodes which are fixed and evenly circulated on the boundary between different
mesh zones (P. O. Persson & Strang, 2004). By keeping the topology of vertices and just altering their radial
length, a rough spherical mesh can be generated via importing their spherical coordinates into Equation 8 (Wei
et al., 2020). Insets in Figure 3a depict morphology features of three fractally rough spheres using above steps.
After obtaining surface mesh, 3D Delaunay triangulation (Lo, 2014) is implemented to generate tetrahedral el-
ements. Overall, both smoothed and rough spheres have about 90,000 surface and 700,000 volume elements.
More than 90% of elements are in the mesh‐fine zone. Notably, internal nodes of solid elements of poor quality are
also moved with iterations by trials and errors until high‐quality elements are achieved. The mesh sensitivity has
been analyzed to ensure that the mesh in the contact zone is fine enough; that is if the mesh size is fine enough,
with finer mesh the plot depicting normal contact force versus normal contact displacement could remain un-
changed, as shown in Figure 1‐c. The sign of not fine enough mesh is that the plot of finer mesh size would depart
from the original one.

Figure 3. (a) Relations between power spectrum, Ln, and ultra‐high degree spherical harmonics degree, n. Inset green, red,
and blue plots represent three typical morphology features in mesh‐fine zones of (Rr , Df ) = (2 × 10− 5

̅̅̅
π

√
, 2.1) ,

(Rr , Df ) = (2 × 10− 5
̅̅̅
π

√
, 2.5) , and (Rr , Df ) = (32 × 10− 5

̅̅̅
π

√
, 2.1) , respectively. The former two are for comparing

influences of fractal dimension (Df), while the first and the third are for comparing influences of relative roughness (Rr). Here, r
denotes the mean radius length, while rl denotes the lth radius length; λ(n) = 2πr

n+0.5 is the wavelength and related to n. (b) Graded
finite element method mesh for the smoothed sphere. Three circular regimes from the center denote the fine mesh zone,
transition zone, and coarse mesh zone, respectively. One set of (θ,φ) represents the latitudinal and longitudinal angle for one
point in the spherical coordinate system.
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3.2. Validations of the Extended Cattaneo‐Mindlin Solution

We first carry out FEM simulations of friction contacts between two purely elastic smooth spheres. The simu-
lation results are compared with the extended Cattaneo‐Mindlin solution (depicting the regime prior to the full
slide) to calibrate our FEM simulations, and also to validate the newly derived analytical solution for the full slide
regime. The comparison is summarized in Figure 4 for various normal contact distances, friction coefficients, and
elastic material properties. Therein, we normalize the tangential displacement by the critical slide displacement,
δsu. When the ratio is smaller than one, the transparent blue region in Figure 4 represents the classical regime of
the Cattaneo‐Mindlin solution (partial‐to‐full sliding), while it is the full slide regime when the ratio is larger than
one, as indicated by the transparent green region. It can be seen in the main plot (in log scale) that our FEM
simulation results agree well with the Cattaneo‐Mindlin solution, demonstrating the simulation accuracy. In the
inset, we can see the consistency between numerical and analytical results for the full slide regime, validating the
newly derived analytical solution. Detailed procedures for conducting FEM simulations in Abaqus environments
and the function for realizing the extended Cattaneo‐Mindlin solution can be found in our Zenodo repository
(Zhai, 2023).

4. Results
In this section, influences of plasticity, h0, μs, Rr, and λr(n) on the tangential contact response for rough spheres are
investigated; deviations induced by each factor are discussed by comparing with the reference group (with
simulation parameters listed in No. 2–4 of Appendix B and morphology features in mesh‐fine zones of bottom
surfaces depicted in the insets of Figure 3a). In addition to Fx(s) expressed in Equation 7, Fz(s) is also studied.
During the partial‐sliding regime, Fz(s) is calculated by Hertzian solution (see Appendix A), while in full slide
regime, it can be readily determined by combing Equations 4 and 6,

Fz(s) =

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

4
3
E∗R∗1

2h0
3
2, s ≤ δsu

4
3
E∗R∗1

2[− (s cos α − Zh sin α) tan α + 2R −
Zh

cos α
]

3
2 cos(α − β)

cos β
, s > δsu

. (11)

The considered roughness, friction coefficient, normal contact distance, and material properties can be typically
seen for grain interactions in diverse geophysical applications (Cavarretta et al., 2011; Y. Li et al., 2021; Otsubo

Figure 4. The effects of (a) the normal contact distance, h0, (b) the Coulomb friction coefficient, μs, and (c) material
properties on the relationship between the normalized traction forces, Fx

μsFZ
, and normalized transverse displacements, s

μsCMh0
at

contacts of two smooth spheres. FZ is the normal contact force at the end of normal contact just before the start of tangential
contact. Solid lines represent analytical results based on the extended Cattaneo‐Mindlin solutions, circle points represent finite
element method simulation results, and star points represent the transition point from partial sliding to full sliding. The
background with the color of transparent blue is for the partial sliding regime, while the color of transparent green is for the full
sliding regime.
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& O'Sullivan, 2018), as summarized in Appendix B. Notably, the normal contact distance for rough sphere
contact pairs is calculated according to their mean radial lengths, which are the same as their corresponding
smoothed spheres.

4.1. Influences of Plasticity

The complete evolutions of the tangential force and vertical force for pure elastic and elasto‐plastic contacts
during the tangential loading process are shown in Figure 5. The plasticity is represented as a typical isotropic
power‐law strain hardening, as detailed in Appendix C1. According to some relevant experimental studies of nano
indentation on pure components of rock surfaces (Strozewski et al., 2021), the ratio of yield stress σY of pure
quartz to the composite elastic E* denoted in Equation A2 has an order of magnitude about − 2. To account for
plasticity induced by microcracks and coated clay on the grain surfaces, we set σY = 0.01E* = 478.66 MPa. With
the hardening constant ƙ = 4,681.02 MPa, Equation C6 could represent one linear relation between σ and ε for
both elastic and plastic regimes when the hardening exponent ƞ = 1. When ƞ = 0, a perfectly elasto‐plastic
behavior is represented. Here, ƞ = 0.3 is utilized for a reference (Ceccato et al., 2022).

No effect on the normalized critical tangential force is observed. Figures 5a and 5c exhibit the effect of the
roughness for the purely elastic material. In general, the high roughness results in a smaller critical tangential
force and a smaller vertical force at the transition to the full slide regime. The high roughness also leads to a

Figure 5. Normalized traction forces, Fx
μsFZ

, in (a) and (b) and normalized normal force, Fz
μsFZ

in (c) and (d), versus normalized
transverse displacements, s

μsCMh0
, for elastic ((a) and (c) with simulation parameters listed in No. 2–4 of Appendix B) and

elasto‐plastic contacts ((b) and (d) with simulation parameters listed in No. 25–28 of Appendix B). Solid lines represent
analytical solutions of smoothed elastic sphere contacts, while circular points represent simulation results.
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smaller tangential force from the onset of the applied tangential motion. Figures 5b and 5d show the effect of
material plasticity: the critical tangential forces become smaller than that of the elastic contact. Moreover, the
effect of the roughness is weakened/neutralized, consistent with results reported by Song et al. (2016). Notably,
up to now there is no widely‐accepted rigid analytical solution for elasto‐plastic smoothed sphere contact, even
at the normal contact regime. Thus, to discuss the influence of plasticity on frictional contact, we use results of
FEM as a replacement (black lines in Figures 5b and 5d). Interestingly, with the realistic values of Df ∈ (2.1,
2.5) and Rr into consideration, negligible differences are found between the case of Df = 2.1 and that of
Df = 2.5, especially for Fz; by contrast, high Rr could shift both Fx and Fz more from that of smooth sphere
contacts.

It is also noted that when 0 < s ≪ δsu, the shape of Fx /(μs · FZ) versus s/(μs · CM · h0) for elasto‐plastic contact
resembles that of elastic contact in the reference group; that is, the tangential response in this stage is less
influenced by plasticity. With the increase of s to about 0.2δsu ≲ s < δsu, Fz drops sharply till s = δsu, while Fz of
the elastic sphere contact remains unchanged in the partial‐sliding regime. Upon initial inspection of Figure 5d, a
question may arise regarding the timing of the transition of slide regimes, particularly as the normal contact force
decreases well before s= δsu for Cases 26–28 detailed in Appendix B. However, this assumption is unfounded. In
the classical Cattaneo‐Mindlin problem, the transition occurs due to alternations of contact area. While in
Figure 5d, the reduction of normal contact force before s = δsu is attributed to plasticity saturation within the bulk
material. As traction stress rises during the sliding process, plasticity saturation intensifies, leading to a decrease
in normal contact stress, as shown in Figure 11a. Most importantly, Figure 11a indicates that the entire contact
interface remains nearly “static” before s = δsu. When s is increased to δsu = μsCMh0, the drop of Fz is alleviated
due to the movement of the whole contact interface which stabilizes the bulk plastic saturation to some extent.
Furthermore, influences of roughness (say, relative roughness and fractal dimension) induce lower Fx and Fz,
which could be compensated by plasticity.

In a pertinent work by Olsson and Larsson (2014), the Coulomb frictional contact between a deformable elasto‐
plastic sphere and a rigid flat plane with a constant interference was simulated using FEM. They claimed that the
initial tangential stiffness, scaled with the elastic prediction from Cattaneo and Mindlin problem, is independent
of plasticity, after a careful confirmation that no plastic dissipation was observed during the very initial stage of
tangential loading. We extend, here, such an independence on plasticity, responsible for the similar tangential
stiffness of elastic contact to elasto‐plastic contact, to the contact between two elastic‐plastic rough spheres.

4.2. Influences of Normal Contact Distance and Dry Friction Coefficient

There is no doubt that the micro friction coefficient, μs, has a significant influence on macro frictional contact
response. As early in 1978, Byerlee (1978) in his famous publication, “friction of rocks,” summarized a large
number of existing experimental data and found that the normal stress (σN) determined by normal contact
distance dominates the shear stress (τf): at low σN, τf = 0.85σN, while at high σN, τf = 0.5 + 0.6σN, and at
extremely high σN, τ f = A · σNn, where A and n are constants. Since then, the varying normal stress level
realized by tunning normal contact distance has been a focal point in geophysics (Kilgore et al., 2017; Linker &
Dieterich, 1992).

Figure 6 exhibits the effect of the normal contact distances on the tangential responses, indicating a competition
mechanism between normal contact distance and roughness. No effect on the normalized critical tangential force
is observed. The larger normal contact distance, h0, leads to a faster drop of the tangential force in the full slide
regimes of both smoothed and rough sphere contacts. As indicated in Figures 6d and 6e, Fz of low‐roughness
sphere contacts coincides well with that of smooth sphere contacts; however, for high‐roughness sphere con-
tacts, in Figure 6f it can be seen that the larger normal load reduces the effect of the roughness through com-
parisons with smooth sphere contacts. This finding is consistent with the consensus in contact mechanics where
the relation between normal contact load and displacement would gradually converge to that of Hertzian solution
with the increase of normal load (Pastewka & Robbins, 2016; Pohrt & Popov, 2013; Wei et al., 2020). With this
manifestation of normal load, we show here the relationship between normal load and tangential displacement in
contacts between two rough elastic spheres can align with that of smooth sphere contacts, even without resorting
to the simplification used in previous studies, such as Pohrt and Popov (2013) and Pastewka and Robbins (2016).
In those studies, the contact between two rough spheres is approximated as that between an elastic flat substrate
and a rigid rougher sphere. Although compared with Rr, Df has negligible effects on Fz, it alters Fx more as
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illustrated in Figures 6a and 6b, of which the influences could also be mitigated with the increase of h0. Such
influences of higher h0 is more evident as demonstrated in Figure 6c, where the discrepancy between rough sphere
contact and smooth sphere contact could be highly relieved.

The effect of the pre‐defined/micro friction coefficient, μs, is shown in Figure 7. No effect on the normalized
critical tangential force is observed. The larger micro friction coefficient leads to a faster drop of the tangential
force in the full slide regimes of both smoothed and rough sphere contacts. For lower roughness contact, in
Figures 7d and 7e relations between normalized Fz and normalized s of rough sphere contacts compare well with
those of smooth sphere contacts no matter for higher or lowerDf. HigherDf could only alter Fx via lower μs, as can
be seen in Figure 7b. This is because higher μs could induce more lateral confining forces on the interfacial
surfaces, and thus the wavy surfaces would be more stretched to a “flatter” shape. Consequently, the macro
tangential force tends to overlap with that of smooth sphere contacts, of which the contact interface is perfectly
flat. Such an explanation is further verified by Figure 7(c), wherein the discrepancy of the curve denoting
Fx /(μs · FZ) versus s/(μs · CM · h0) between the higher‐rough sphere contact and the corresponding smooth sphere
contact of the same μs is alleviated gradually with higher μs. Meanwhile, the tangential forces of various friction
coefficients in rough sphere contact undergo parallel drops to those of corresponding smooth sphere contacts,

Figure 6. Normalized traction forces, Fx
μs FZ

, in (a)–(c) and normalized normal force, Fz
μs FZ

in (d)–(f), versus normalized transverse displacements, s
μsCMh0

, for rough elastic
sphere contacts with initial normal displacement h0 of 0.005R (with simulation parameters listed in No. 30–32 in Appendix B), 0.01R (with simulation parameters listed
in No. 2–4 in Appendix B), and 0.015R (with simulation parameters listed in No. 34–36 in Appendix B). Lines represent the extended Cattaneo‐Mindlin solutions of
smooth spheres, while circular points represent simulation results of rough sphere contacts.
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indicating that although there is a competition mechanism between micro friction coefficient and roughness on Fx
during the full slide regime, the combined effects of the two factors can be unified and the Fx − s curves retain the
shape of smooth sphere contact. By contrast, the discrepancy of Fz does not diminish at all in Figure 7f; that is
because Fz is more sensitive to the vertical confining, but μs mostly enhance the lateral confining, although the
rough sphere has wavy roughness on its surfaces.

4.3. Influences of Relative Roughness

Up to now, roughness is thought to be one of the dominant factors in controlling frictional contact response;
exactly speaking, friction coefficient is not a material property, but heavily influenced by loading conditions
alternated by changing the contact morphology via only slightly tilting the edges of contacted surfaces (Ben‐
David & Fineberg, 2011). Albeit this, recent studies by Mollon et al. (2020) have also shown that friction and
roughness cannot be taken as equivalent in DEM simulations of biaxial compressions of discrete grains. Spe-
cifically, the peak strength of extremely smooth grain samples could saturate and not reach the strength of rough
grain samples, no matter how large the micro friction coefficient is specified. This finding not only hinders the
application of the experimentally measured friction coefficient (Sandeep et al., 2019) into smooth‐contact DEM,
but also indicates the sought‐after necessity to explicitly introduce roughness in numerical methods. This

Figure 7. Normalized traction forces, Fx
μsFZ

, in (a)–(c) and normalized normal force, Fz
μsFZ

in (d)–(f), versus normalized transverse displacements, s
μsCMh0

, for rough elastic
sphere contacts with μs of 0.3 (with simulation parameters listed in No. 6–8 in Appendix B), 0.5 (with simulation parameters listed in No. 2–4 in Appendix B), 0.8 (with
simulation parameters listed in No. 10–12 in Appendix B) and 1 (with simulation parameters listed in No. 14–16 in Appendix B). Lines represent the extended Cattaneo‐
Mindlin solutions of smooth spheres, while circular points represent simulation results of rough sphere contacts.
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necessity can be straightforwardly extended to studies of dynamic rupture propagation in earthquakes and other
geophysical applications, where the explicit introduction of roughness in numerical methods such as Boundary
Integral Method and FEM is desired, instead of directly incorporating experimentally derived laws, such as the
rate and state dependent friction law. This is particularly relevant to simulations in Mollon et al. (2020), as the
discrete fault gauge in such simulations is typically sandwiched by two rough surfaces.

In Figure 8 we show evolutions of Fx and Fz versus s across nearly three magnitudes of normalized root mean
square roughness, Rr. At the first glance, with the increase of Rr, both normalized Fx − s and Fz − s curves
gradually deviate from those of smooth sphere contacts. During the partial‐sliding regime, s≤ 1, such departure of
Fx encountered at the very beginning of tangential displacement is more evident than that of Fz, as indicated in
Figure 8a. This is because directions of frictional forces tend to evolve from completely anisotropic (along the
direction of macro tangential displacement, x) to nearly isotropic, and thus Fx decreases at the same s. Such a
tendency of gradual deviation from the extended Cattaneo‐Mindlin solution with higher Rr also occurs in
Figure 8b for Fz − s curves during the partial‐sliding regime. It may seem perplexing that the frictional responses,
as depicted by the normalized Fx − s and Fz − s curves for lower Rr are nearly identical to that of the smooth
sphere contact. Roughness of small scales does indeed influence the frictional response, as illustrated by MD
simulations in Luan and Robbins (2009, 2021). However, this study employs continuum scale computations,
which can potentially break down at the specific length scales. The frictional response is controlled by the normal
contact state. According to Greenwood and Tripp (1967), for the normal contact between two rough spheres the
normal force and displacement curves would gradually converge to that of the Hertzian solution at the transition
normal contact force (Ftz), that is, Ftz ∝ 2− 1

4Rr
3
2r2 E

1 − v2 , where E and v are Young's modulus and Poisson's ratio,
respectively. For cases of lower Rr, h0 = 0.01R > ht0, where ht0 is the normal contact interference at Fz = Ftz, the
normal contact would converge to the Hertzian solutions for smooth sphere contact; as a result, the frictional
response is manifested by the extended Cattaneo‐Mindlin solution, as illustrated in Figure 8. With increasing Rr,
obtained Fz − s curves and Fx − s curves would gradually deviate from the Hertzian solution, as shown in

Figure 8. (a) Normalized traction forces, Fx
μsFZ

, and normalized normal force, Fz
μsFZ

in (b), versus normalized transverse displacements, s
μsCMh0

, for rough elastic sphere
contacts with various Rr (with the increase of Rr simulation parameters are listed in No. 2, 49, 4, and 53–56 in Appendix B), of which the top surface morphology in the
mesh‐fine zone is depicted in (c). Hot color means high Rr. Lines represent the extended Cattaneo‐Mindlin solutions of smooth spheres, while circular points represent
simulation results of rough sphere contacts.
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Figure 8. This finding is consistent with Figure 6, indicating there is a competition mechanism between Rr and h0
in determining the discrepancy of macro mechanical response with respect to that of smooth sphere contacts. It is
noted that in Figure 8 for Rr ≥ 4 × 10− 3

̅̅̅
π

√
, both normalized Fx − s and Fz − s curves do not retain the shape of

the extended Cattaneo‐Mindlin solution at all; thus, the critical tangential displacement, δsu, cannot be well
predicted by μsCMh0. Because of the high amplitude of randomness in morphology features, which brings sudden
or unpredicted changes to both Fx − s and Fz − s, a deterministic model to describe them is hard to be found.When
and only when the normal contact interference is deep enough, representative results are accessible at the post‐
partial‐sliding regime.

4.4. Influences of Wavelength Range

As indicated in Candela et al. (2012), fault surfaces exhibit multi‐scaled morphology features across nine decades
of length scales, which can be depicted by accumulative wavelengths. Since roughness is one of the important
factors in determining frictional properties, it is necessary to discuss the influence of wavelength ranges
approximating the surface topology on the contact. Instead of the nominally flat rough surfaces, we look at the
contact of their asperities (deemed as rough sphere caps in this study), which are of more primary interest.
Figure 9 illustrates influences of wavelength scope with the cut‐off or shortest of λ(2,000) and Rr = 2 × 10− 5

̅̅̅
π

√

or 2 × 10− 4
̅̅̅
π

√
on macro contact response. Notably, for n = 1, SH has negligible effects on grain morphology

(Mollon & Zhao, 2012), thus, when λr(n) = λ(2) full‐range wavelength is used to generate grain morphology. To
achieve the representative results from the contact at mesh‐fine zone, Rr = 2 × 10− 5

̅̅̅
π

√
and 2 × 10− 4

̅̅̅
π

√
are

selected, otherwise with much higher Rr the rough grain would not “roughly” retain the shape of the sphere.
According to Zhao et al. (2017), λ(8) is fine enough to represent the roundness scale of grain surfaces, below
which is the roughness scale (Barrett, 1980). As depicted in Figure 9(e), with the increase of λr(n) the macro
asperity size gradually shrinks at the contact zone.

Globally at lower Rr, the extended Cattaneo‐Mindlin solution can still well capture the evolutions of both Fx − s
and Fz − s curves, as shown in Figures 9a and 9c; however, at higher Rr, δsu in Fx − s curves departs from μsCMh0
when λr(n) > λ(300). By contrast, the Fz − s curves compare well with the extended Cattaneo‐Mindlin solution at
higher Rr. It is also noted, that is, in the insets of Figures 9c and 9d, that vibrations around analytical solutions are
encountered in force‐displacement curves due to the so‐called cumulative partial‐to‐full sliding or repeated stick
and slide state at single asperities; the vibration amplitudes, A, are dependent on both Rr and λr(n), but such
dependence is rather complicated and not monotonic. For Rr = 2 × 10− 5

̅̅̅
π

√
, all curves of various λr(n) show

violent fluctuations except for the one of the median λr(n)= λ(31) in the reference group, which is smooth (see the
green curve in Figure 9c). In Figure 9d vibrations start to be encountered when the roll‐off wavelength is shorter
than λ(15).

5. Discussions
Supported by the numerical modeling, here we elucidate that the critical tangential displacement of rough
sphere contacts of various μs, h0, and material properties can be well predicted by Cattaneo‐Mindlin solution, as
summarized in Figure 10a. Notably, simulated δsu is determined by the average of displacements beyond which
roughly continued drop occurs in both Fx and Fz. In Figure 10b, simulated δsu influenced by Rr and λr(n) of the
same λs(n) = λ(2,000) is summarized; δsu = μs · CM · h0 still holds, except for some extreme cases. With the
increase of Rr, simulated δsu departs gradually from μs · CM · h0. This is within anticipation, since it has been
shown in Figure 8 the global shape of both Fx − s and Fz − s curves cannot be described by the extended
Cattaneo‐Mindlin solutions. Simultaneously, at higher Rr, simulated δsu of cases with shorter roll‐off wave-
lengths or narrower wavelength ranges also deviate from the analytical solution for smooth sphere contacts.
Such a departure can be explained by the increased vibrations at contact interfaces due to the enlargement of
macro asperity numbers, which can be seen in Fz − s curves in the insets of Figure 9d and rough grain
morphology in Figure 9e.

To elucidate the reason for the repeating well‐performance of δsu = μs · CM · h0 to predict the critical shear
displacement for various rough sphere contacts, underlying revolutions of the contact interfaces can be tracked.
Figure 11 provides the full evolution of the contact pressure pN, traction along the projection of global x direction
on the local contact plane qx, traction along the y direction (perpendicular to the plane crossed by directions of pN
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and qy) on the contact plane qy, and contacted node friction saturation ʂ, defined in Appendix C2. For purely
elastic material, the contact pressure distributions of the similarly low Rr, yet distinct Df, do not differ much from
the smooth sphere. Compared with the realization of (Rr, Df ) = (2 × 10− 5

̅̅̅
π

√
, 2.1), the realization with higher

Df, yet the same Rr, only bring fluctuations on the distribution of pN. The increased roughness results in a contact
area very different from a disk, and at the same time, an irregular distribution of the contact pressure compared
with that of the smooth sphere contact. The regions with higher contact pressure are not necessarily located closer
to the central contact points, but widely distributed around the whole contact area and even at the boundary of it,
as indicated in Figure 11a of

Figure 9. Normalized traction forces, Fx
μsFZ

, in (a, b) and normalized normal force, Fz
μsFZ

in (c, d), versus normalized transverse
displacements, s

μsCMh0
, for rough elastic sphere contacts with various roll‐off wavelength, λr(n). Panels (a) and (c) are for

Rr = 2 × 10− 5
̅̅̅
π

√
, while (b) and (d) are for Rr = 2 × 10− 4

̅̅̅
π

√
. (e) The top surface morphology features in the mesh‐fine zone

for the group of Rr = 2 × 10− 5
̅̅̅
π

√
. Notably, the morphology features of the group of Rr = 2 × 10− 4

̅̅̅
π

√
are the same as those of

Rr = 2 × 10− 5
̅̅̅
π

√
except for the range of color map, of which it belongs to [0.9996, 1.0004], 10 times wider when compared

with Rr = 2 × 10− 5
̅̅̅
π

√
. Simulation parameters for the group of Rr = 2 × 10− 5

̅̅̅
π

√
are listed in No. 40–42, 2, and 43–45, while

simulation parameters for the group of Rr = 2 × 10− 4
̅̅̅
π

√
are listed in No. 46–52. For the data point in (a)–(c) and the subfigure

contour in (e), a hotter color indicates results extracted from the contact with a shorter roll‐off wavelength. Lines represent
analytical solutions of smooth sphere contact, while circular points represent simulation results of rough sphere contacts.
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(Rr, Df ) = (2 × 10− 5
̅̅̅
π

√
, 2.1). For elasto‐plastic material, the pressure distribution is more homogeneous due to

the plastic yielding at the contact interface. Another interesting observation is that for purely elastic material, the
contact pressure does not really evolve in the whole partial‐to‐full sliding regime, while for elasto‐plastic ma-
terial, it is seen that the high contact pressure gradually disappears. This is because in the partial sliding regime,
the in‐plane tangential loading increases while the stress at the contact interface is bounded by its plasticity
strength/yield surface. Therefore, the stress state has to evolve into another location at the yield surface where the
shear stress is higher and the normal stress becomes smaller. Furthermore, a completely different pressure dis-
tribution in the full slide regime can be seen, indicating a different contact morphology/configuration and the
necessity of no involvement in rough‐flat simplification when considering rough sphere contacts.

The effect of the roughness is more pronounced (even for low Rr) for the in‐plane shear traction, as shown in
Figures 11b and 11c. When considering purely elastic material, for qx we can see that at the small tangential
loading there are contact points whose tractions are negative. These values gradually evolve and become
positive at the transition to full slide. For qy, tractions in both tangential directions exist even at the critical
transition to full slide regime. However, its value is much smaller and equals about at most 5% of qx. In full
slide regime, these non‐zero tractions are barely seen. For the in‐plane traction, plasticity has played a sig-
nificant role: for qx, negative values are barely seen; for qy, there are much fewer contact points with non‐zero
traction.

Figure 11d shows the evolution of the contacted node friction saturation: when the value ʂ= 1, it means locally the
contact point evolves into the full slide regime, otherwise it is in the state of the partial slide. It is seen that for
purely elastic contact, with the increasing of the tangential loading, zones of contact points that have translated to
the full slide state would not necessarily shrink toward the central contact point, especially for higher roughness.
The distribution of the full‐slide points is dependent on both contact morphology and loading conditions. While
similar to the classical Cattaneo‐Mindlin solution, the transition starts from the boundary of the contact interface
toward the center for elasto‐plastic contact, indicating that plasticity could alleviate the influences of roughness on
friction evolution on the contact interface. Moreover, it is evident that local partial‐slide exists even when the full
slide regime of the contact interface sustains for a certain period. Such a paradoxical phenomenon, difficult to be
seen in the contact between one rigid platen and a deformable rough sphere, is enhanced by roughness for more
asperity interlockings, but relieved by plasticity for more flat contact interfaces due to the plasticity saturation.
The contact nodes in the partial slide state initially distribute continuously or cluster, when the whole contact
interface is in the partial slide regime; while upon entering the full slide regime, they distribute sporadically across
the entire contact area. Such a transition process is called de‐cluttering. In a short summary, at s = μs · CM · h0 the
vanishment of qx independent of the global tangential displacement direction, x, the downscaling of the magnitude

Figure 10. (a) Summary of simulated critical tangential displacement, δsu, of rough sphere contacts influenced by micro
friction coefficient, μs, normal contact displacement, h0, and material properties; (b) Simulated δsu versus relative roughness,
Rr, and normalized roll‐off wavelength, λr (n)r , for rough sphere contacts with the same fractal dimension (Df), μs, h0, cut‐off
wavelength (λs(n) = λ(2,000)), and elastic properties. In (a), color black, green, red, and blue represent Rr = 0,
(Rr , Df ) = (2 × 10− 5

̅̅̅
π

√
, 2.1) , (Rr , Df ) = (2 × 10− 5

̅̅̅
π

√
, 2.5), and (Rr , Df ) = (32 × 10− 5

̅̅̅
π

√
, 2.1), respectively.
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of qy, and the de‐clustering of contacted nodes in partial‐slide states explain the reason for the capacity of
Cattaneo‐Mindlin solution to predict the critical shear displacement of rough sphere contact.

The findings in this study have wide implications in geophysics. The most apparent application is DEM, which
stands out as one of the most prevalent methods to simulate motions of discrete bodies in geophysics. In DEM, the

Figure 11. (a–d) The evolution of distributions of normal contact stress pN, friction stress qx and qy, and friction saturation ʂ
on contacted nodes with the normalized tangential displacement, s

δsu
, for cases of elastic contacts featured by white

background (No. 2–4 in Appendix B, the reference group) and elastic‐plastic contacts featured by gray background (No. 26–28
in Appendix B, the elastic‐plastic contact group). pH,m denotes the maximum normal contact stress of Hertzian sphere contact
determined by Equation A5, with the same composite elastic modulus E*, composite radius R*, and normal contact distance h0.
Black zones in (a–c) are for nodes with pN > 1.5pH,m, |qx| > 1.5μspH,m, and |qy| > 0.15μspH,m, while green zones in (d) are for
modes with ʂ= 1, of which the definition is defined in Appendix C2. Green, red, and blue contours of subfigures represent three
typical morphology features (Rr , Df ) = (2 × 10− 5

̅̅̅
π

√
, 2.1) , (Rr , Df ) = (2 × 10− 5

̅̅̅
π

√
, 2.5) , and

(Rr , Df ) = (32 × 10− 5
̅̅̅
π

√
, 2.1) , respectively, of which the power spectrum and morphology features in the mesh‐fine zone are

provided in Figure 3.
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discrete bodies with their motions governed by Newton's second law, are usually considered as perfect circles in
2D and spheres in 3D. The discrete grains interact with each other via contact models with well‐defined normal
and frictional force‐displacement relationships, such as the Hertzian‐Mindlin model. In the frictional or tangential
contact model, the tangential force would monotonically increase with the tangential displacement until reaching
a peak at critical tangential displacement. Thus, this critical tangential displacement, denoted as δsu in this study,
is of significant importance to accurately compute friction force in DEM. Obtained force‐displacement curves for
tangential contact in this study and for normal contact in our previous study (Wei et al., 2020) can incorporate the
influences of various morphological and material factors, such as relative roughness, fractal dimension, wave-
length range, and plasticity. Although the morphology features generated by USH in this study are hard to import
explicitly into the DEM geometry model, obtained force‐displacement curves in this study can be directly mapped
to the contact law of DEM to study the dynamics of rough spheres with target morphology features and material
properties. Indeed, although the current DEM contact model has considered more fundamental Hertz‐Mindlin
solutions in normal and tangential directions, most of the simplified force‐displacement curves (Chang
et al., 1992; Jenkins & Strack, 1993) are thermodynamically inconsistent due to the omitted load history. To
bridge this gap, Elata and Berryman (1996) added a residual tangential displacement (when the tangential contact
force is unloaded while keeping the normal contact displacement fixed) to Equation A8 to substitute the detailed
account of the load history. Since the residual displacement is no more than δsu, which is also in Equation A8, our
quantitative findings about δsu influenced by various geometrical and loading factors can be imported to the
improved tangential forces model in DEM.

Another obvious implication is wave propagation in granular materials, such as seismic compression (P‐) and
shear (S‐) waves, which has been extensively studied and demonstrates complex phenomena and rich features:
power‐law velocity scaling, dispersion, and attenuation (Aki, 1980; Jia et al., 1999; Kjartansson, 1979).
However, the precise role of inter‐grain behavior highly correlated to grain morphology on these features
remains a continued research interest. Generally, grain morphology can be separately depicted in two length
scales: the global shape and the fine‐scale roughness. In recent experiments reported by Yang and his col-
laborators (Liu & Yang, 2018), the void‐ratio‐function normalized shear wave velocity in the packing of rough
and angular Fujian sands is nearly twice that of smooth and rounded Ottawa sands under the same confining
pressure and of similar global grain shapes quantified by elongation, sphericity, and convexity indices.
Interestingly, in another numerical study about superellipsoid‐based DEM simulations featuring aspherical
Hertzian contact laws by Yang and his collaborators (Tang & Yang, 2021), it was found wave transmits in
superellipsoid‐shaped grains of the same elongation but different angularity by nearly the same speed. The
conclusion, wherein shear wave velocity can be only slightly influenced by grain elongation for packings with
angular grains, is contrary to their experimental observations. The intriguing inconsistency between their nu-
merical and experimental results that higher wave velocity can be found in rough grain packing can be
explained by our results in this study. Their numerical simulations are just for smoothed grains without
considering roughness; in our results retaining the same globally spherical shape but various roughness it is
clear that in Figure 8 shear stiffness, ks, between grains increases evidently for rougher spheres. According to
Winkler (1983), shear wave velocity, Vs, can be explicitly determined by normal contact stiffness, kn, and ks

between grains: Vs =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
f(kn + 1.5ks)/ρ

√
, where Vs is the shear wave velocity, ρ is the grain density, and f is a

function of grain coordinate number, porosity, and grain size. Under dense packing, the grain normal contact
force is plausibly assumed to be as high as the critical value to converge to Hertzian solution; the increase of Vs
in experiments of Liu and Yang (2018) can be explained by the increasing of ks. The capability of large grain
contact shear stiffness to enhance the wave propagation speed in uncemented granular sediments has also been
reported in our previous study (Zhai et al., 2020).

The present study also provides an intuitive numerical framework at desired resolutions, providing insights into
analyzing the earthquake occurrence on the asperity basis, such as the asperity model (Lay & Kanamori, 1981),
whereas large earthquake rupture zones usually occur over discrete, non‐overlapping segments of the convergent
zone and these segments with strong slide resistance are called asperities. Currently, the shear stress distribution
in Mindlin solution has been widely applied to deriving the in‐plane and anti‐plane mode stress intensity factor in
the elliptical crack problem for shear‐induced rupture (Das & Kostrov, 1983, 1985; Gao, 1989). Since the asperity
contact area is not modestly, but significantly different from a circle, our anisotropic frictional stress distribution
in Figures 10b and 10c could provide a more fundamental solution to shear‐induced rupture; furthermore, our
results in the full slide zone are beneficial to dynamic earthquakes, while the original Cattaneo‐Mindlin solution is
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just for the partial‐to‐full slide regime, where the contact area is “static.” This study highlights the influence of
roughness parameters in producing local slides and evolving stress distributions, which are found to be distinct
across contacts. In Figure 10d the recurrence of partial or full slide state can be seen at some contact zones,
especially for contacts of higher roughness. The strong correlation between local slide patterns and surficial
roughness agrees with the numerical studies (Allam et al., 2019), geodetic studies (Milliner et al., 2015), and
paleoseismic studies (Rockwell et al., 2015). However, this study only furnishes a simplified pathway, motivating
the development of future models for fault triggering incorporating aspects of moisture effects and complex
loading and boundary conditions.

Although our studies are conducted using numerical simulations, existing experimental tools widely imple-
mented in geophysical research are readily accessible to validate the extracted findings. These experimental
validations can be realized in two folds: macroscopic contact responses under different roughness conditions
and microscopic contacts and their spatiotemporal evolutions. At first, the rough spheres with well‐controlled
micro morphology features can be generated using 3D printing (Wei et al., 2021) and then adopted similar
experimental set‐ups for frictional contact between two grains (Kasyap et al., 2021; Sandeep et al., 2019). In
addition to macro contact responses, characterized by force‐displacement relations, micro‐level information
such as contact and frictional stresses can be tentatively measured for certain resolution and accuracy, using
micro‐electromechanical systems (Scheibert et al., 2009). Since the quasi‐static loading is adopted in this study,
fast X‐ray computed tomography (Zhai et al., 2020) can be employed to track the 3D spatial evolutions of
asperity contact between two non‐transparent rough surfaces, which is helpful in understanding the friction
saturation.

6. Conclusions
In this paper, we focus on frictional behavior between two rough spheres. After extending and validating the
Cattaneo‐Mindlin problem for smooth sphere contacts to incorporate the full slide regime, we carried out
intensive and systematic FEM simulations, for the first time, for frictional contact between two isotropic rough
spheres generated based on ultra‐high degree SH. Gigantic parameter studies are conducted to reveal the rami-
fications of rough sphere contacts due to the micro friction coefficient, normal contact interference, material
property, relative roughness, fractal dimension, and wavelength range. The micromechanics for the observed
transition between the partial to full sliding modes are also revealed by investigating the evolution of the spatial
distribution of micro contacts, as well as their contact pressure and local slides. In summary, the main conclusions
of this study are:

• The proposed extended Cattaneo‐Mindlin solution for smooth sphere contacts can approximately describe
macro contact responses (macro normal‐ and friction‐force‐displacement curves) between two rough sphere
contacts under various material properties, micro friction coefficients, normal contact interferences;
δsu = μs · CM · h0 in the Cattaneo‐Mindlin solution can well predict the critical tangential displacement.
However, under some extreme cases, that is, extremely high relative roughness and narrow wavelength, the
shape of macro force‐displacement curves departs the analytical solution much.

• Existing roughness would make the force‐displacement curves slightly depart from those of smoothed sphere
contacts. Meanwhile, such an impact can be enhanced with the increase of roughness, but weakened by
material plasticity.

• With the input roughness parameters from the range of real granular materials, it is found that the rough sphere
contact response is more sensitive to the changes in relative roughness than the fractal dimension.

Appendix A: A Short Review of Cattaneo and Mindlin Problem
The partial‐to‐complete slide motion between two spheres with the radius of R is defined as follows. The
original center of X‐Z coordinate system is at the mass center of the lower sphere, (xl, zl), = (0, 0). The center
of the upper sphere is given as (xu, zu). During the whole transverse motion, the lower sphere is fixed and
restricted to any rotations, which is similar to the relevant experimental study (Cole et al., 2010). After being
vertically compressed of a displacement h0, the upper sphere is subjected to a pure horizontal displacement
along the x‐axis, that is, it is constrained as zu = Zh, where Zh is the vertical distance between centers of the
two identical spheres. For the normal contact regime shown in the left inserted schematic in Figure 1, the
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normal contact force, N, between the two contacted spheres is a function of the overlap, h, according to the
Hertzian contact model (Johnson, 1985),

N =
4
3
E∗ · R∗1

2 · h
3
2, (A1)

where E* and R*, denoting the effective elastic modulus and radius, are defined as

1
E∗ =

1 − v12

E1
+
1 − v22

E2
, (A2)

and

1
R∗ =

1
R1
+

1
R2

, (A3)

with E1 and E2 Young's modulus, v1 and v2 Poisson's ratio, R1 and R2 radius, of the contacted spheres. Under the
normal contact force, a circular contact area of radius a forms. The normal contact stress (pN) on any contact point
depends on its radial distance to the contact center (r):

pN(r) = pN, m · [1 − (
r
a
)
2
]

1
2

, (A4)

where pN,m = pN(r = 0) is the maximum normal contact stress, located in the contact center. By integrating pN(r)
over the circular contact area, pN,m can be explicitly determined as

pN, m =
3N
2πa2

=
3
2
·
N
SA

, (A5)

where SA = πa2 is the contact area. The contact radius, a, is also directly related to h and R* (Johnson, 1985),

a =
̅̅̅̅̅̅̅̅̅̅̅
R∗ · h

√
, (A6)

Substituting Equations A1 and A6 to Equation A5, the maximum normal contact stress reads

pN, m =
2E∗h

1
2

πR∗1
2
. (A7)

For a similar situation in the middle‐inserted schematic of Figure 1, Cattaneo (1938) and Mindlin (1949) derived
the relation between the traction force, Fx(s) and the tangential displacement, s, under a constant normal
force, Fz(s),

Fx(s) =
4
3
E∗R∗1

2h0
3
2

⏟̅⏞⏞̅⏟
N

μs[1 − (1 −
s
δsu
)

3
2

], s ≤ δsu, (A8)

where μs is the set dry Coulomb friction coefficient, s is the slide displacement, δsu is the ultimate tangential slide
displacement when sliding happens. In this relation, the following assumptions were made: (a) pN(r) follows the
distribution of Hertzian contact model, (b) pN(r) and the tangential stress, qT(r), can be treated separately, and (c)
qT(r= a) will go infinity for the complete stick situation. During the partial‐to‐full slide transition, qT(r) obeys the
following equation,
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qT(r) =

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

3μs · N
2π · rsp3

·

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

rsp2 − r2
√

, rsk < r ≤ rsp

3μs · N
2π · rsp3

· (

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

rsp2 − r2
√

−
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
rsk2 − r2

√
), r ≤ rsk

, (A9)

as indicated in Figure 1b, rsk = c denotes the radius of the continuously shrinking stick zone, and rsp = a is the
outer radius of the annulus slide area. The relation between the two reads as

c
a
= (1 −

Fx
μsFz

)

1
3

, (A10)

However, in this study we consider a constant normal contact separation, h0, rather than a constant Fz(s) for the
tangential contacts. Akin to Equation A8, under varying Fz(s) the relation between Fx(s) and sp is solved by
Mindlin and Deresiewicz (1953). According to Mindlin and Deresiewicz (1953), if “simple loading history,”
during which the variation rate of shear force (Fx(s)) is higher than the product of μs and normal force (Fz(s)),

⃒
⃒
⃒
⃒
dFx(s)
dt

⃒
⃒
⃒
⃒ ≥ μs

⃒
⃒
⃒
⃒
dFz(s)
dt

⃒
⃒
⃒
⃒ or |∆Fx(s)| ≥ μs ·

⃒
⃒∆Fz(s)

⃒
⃒, (A11)

is conformed to, after each increment of Fx(s) and Fz(s), normal contact pressure (qN(r)) follows the distribution in
classical solutions for the partial‐slide regime derived from frictional sphere contact under constant normal forces.
Due to the existence of the stick zone, the contact center is fixed in the partial‐slide regime, thus, h= h0 always holds
in this regime for constant Fz(s). As a result, |∆Fz(s)| = 0. Meanwhile, the traction gradually increases, that is, |
∆Fx(s)| > 0. Accordingly, Equation A11 is met in our boundary conditions, thus solutions of traditional Cattaneo
and Mindlin problem suit our boundary conditions of the partial‐slide regime, schematically shown in Figure 1.

Appendix B: Simulation Parameters of All Cases
See Tables B1 and B2.

Table B1
Simulation Details of Cases From No. 1 to 39 With λr = λ(31)

No. μs Material properties Rr Df h0(R)

1 0.5 ① 0 0.010

2 0.5 ① 2 × 10− 5
̅̅̅
π

√
2.1 0.010

3 0.5 ① 2 × 10− 5
̅̅̅
π

√
2.5 0.010

4 0.5 ① 32 × 10− 5
̅̅̅
π

√
2.1 0.010

5 0.3 ① 0 0.010

6 0.3 ① 2 × 10− 5
̅̅̅
π

√
2.1 0.010

7 0.3 ① 2 × 10− 5
̅̅̅
π

√
2.5 0.010

8 0.3 ① 32 × 10− 5
̅̅̅
π

√
2.1 0.010

9 0.8 ① 0 0.010

10 0.8 ① 2 × 10− 5
̅̅̅
π

√
2.1 0.010

11 0.8 ① 2 × 10− 5
̅̅̅
π

√
2.5 0.010

12 0.8 ① 32 × 10− 5
̅̅̅
π

√
2.1 0.010

13 1.0 ① 0 0.010

14 1.0 ① 2 × 10− 5
̅̅̅
π

√
2.1 0.010

15 1.0 ① 2 × 10− 5
̅̅̅
π

√
2.5 0.010

16 1.0 ① 32 × 10− 5
̅̅̅
π

√
2.1 0.010
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Table B1
Continued

No. μs Material properties Rr Df h0(R)

17 0.5 ② 0 0.010

18 0.5 ② 2 × 10− 5
̅̅̅
π

√
2.1 0.010

19 0.5 ② 2 × 10− 5
̅̅̅
π

√
2.5 0.010

20 0.5 ② 32 × 10− 5
̅̅̅
π

√
2.1 0.010

21 0.5 ③ 0 0.010

22 0.5 ③ 2 × 10− 5
̅̅̅
π

√
2.1 0.010

23 0.5 ③ 2 × 10− 5
̅̅̅
π

√
2.5 0.010

24 0.5 ③ 32 × 10− 5
̅̅̅
π

√
2.1 0.010

25 0.5 ④ 0 0.010

26 0.5 ④ 2 × 10− 5
̅̅̅
π

√
2.1 0.010

27 0.5 ④ 2 × 10− 5
̅̅̅
π

√
2.5 0.010

28 0.5 ④ 32 × 10− 5
̅̅̅
π

√
2.1 0.010

29 0.5 ① 0 0.005

30 0.5 ① 2 × 10− 5
̅̅̅
π

√
2.1 0.005

31 0.5 ① 2 × 10− 5
̅̅̅
π

√
2.5 0.005

32 0.5 ① 32 × 10− 5
̅̅̅
π

√
2.1 0.005

33 0.5 ① 0 0.015

34 0.5 ① 2 × 10− 5
̅̅̅
π

√
2.1 0.015

35 0.5 ① 2 × 10− 5
̅̅̅
π

√
2.5 0.015

36 0.5 ① 32 × 10− 5
̅̅̅
π

√
2.1 0.015

37–39 0.5 ① 32 × 10− 5
̅̅̅
π

√
2.1 0.010

Note. (i) Parameters in red are for the reference group of simulations; (ii) Colorful backgrounds of parameters indicate
differences from the reference group.

Table B2
Simulation Details of Cases From No. 40 to 55 With Materials Properties of ①, μs = 0.5, h0(R) = 0.010, and Df = 2.1

No. Rr λr(n)

40 2 × 10− 5
̅̅̅
π

√
λ(2)

41 2 × 10− 5
̅̅̅
π

√
λ(8)

42 2 × 10− 5
̅̅̅
π

√
λ(15)

43 2 × 10− 5
̅̅̅
π

√
λ(300)

44 2 × 10− 5
̅̅̅
π

√
λ(600)

45 2 × 10− 5
̅̅̅
π

√
λ(1,200)

46 2 × 10− 4
̅̅̅
π

√
λ(2)

47 2 × 10− 4
̅̅̅
π

√
λ(8)

48 2 × 10− 4
̅̅̅
π

√
λ(15)

49 2 × 10− 4
̅̅̅
π

√
λ(31)

50 2 × 10− 4
̅̅̅
π

√
λ(300)

51 2 × 10− 4
̅̅̅
π

√
λ(600)

52 2 × 10− 4
̅̅̅
π

√
λ(1,200)

53 2 × 10− 3
̅̅̅
π

√
λ(31)

54 4 × 10− 3
̅̅̅
π

√
λ(31)

55 6 × 10− 3
̅̅̅
π

√
λ(31)

56 8 × 10− 3
̅̅̅
π

√
λ(31)
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Appendix C: Details and Validations of FEM Simulations
FEM simulations were conducted in the commercial finite element (FE) package, ABAQUS (2016). Full inte-
gration for an element, the totalmass ofwhich is defined by a lumpedmassmatrix and averagely distributed over its
four nodes, is considered for virtual work. Since the implicit approach is too memory intensive and even not
possible for significant nonlinearity of contacts between rough surfaces, the explicit schematic is usually employed.
Within the augmented Lagrangian framework, FE discretization leads to a discrete system of equations,

M · ü + Fi − Fe = 0, (C1)

where ü is the acceleration vector, M the diagonal mass matrix, and Fi and Fe the internal and external force
arrays. This equation is discretized in time by the central difference integration framework:

u̇n+1/2 = u̇n− 1/2 +
Δtn+1 + Δtn

2
ün, (C2)

un+1 = un + Δtn+1u̇n+1/2, (C3)

Δt =
̅̅̅̅
ρ
E

√

l, (C4)

where n is the nth time step or increment, u a degree of freedom, Δt the length of stabilized time step, ρ the bulk
material density, and E the elastic modulus. Mass scaling of ρ is permitted for the elements, of which their Δt is
shorter than a constant target length. Although the explicit schematic and mass scaling are utilized, it has been
checked that the kinetic energy never takes up more than 1% of internal energy during the sliding process (see
Figure C3), indicating that our simulation is deemed to be quasi‐static.

We conduct the mesh size sensitivity study for the fine mesh zone with the mesh size, l, using the contact between
an elastic sphere, of E = 94.4 GPa and v = 0, and a rigid flat platen. As demonstrated in Figure C1, the results of
l = 1.5 × 10− 3R and its half, l = 7.5 × 10− 4R, coincide with each other. Meanwhile, the normal contact force
from the linear element, with four integration points and the tetrahedral shape, is slightly higher than that from the
quadratic element, with the same shape but 10 integration points. For FEM simulations, the results in Figure C1
are self‐consistent, as the quadratic elements are softer and more capable to deform due to their shape function. As
a result, when using the same contact algorithm, the macro normal contact force of quadratic elements is lower

than the linear elements. Considering the computational efficiency and better
approximation of the Hertzian solution, linear elements are applied to carry
out FEM simulations, as have been commonly adopted by many other rele-
vant studies (Hyun et al., 2004; Lengiewicz et al., 2020; Pei et al., 2005;
Zhang et al., 2019).

In our simulations, a linear bulk viscosity damping model was employed to
damp elements with the highest frequencies. This was used to prevent the
FEM simulation from failing because of the high ratio (e.g., >1) of the
deformation rate to wave speed at elements. The damping model generates a
bulk viscosity pressure (pl) linear to the element volumetric strain rate (ε̇v),

pl = bρcdLeε̇v, (C5)

where b = 0.06 is the damping parameter, ρ = 2.65 × 103 kg/m3 the material
density, cd the current dilatational wave speed, and Le the element charac-
teristic length. As shown in Figure C2a of the response letter using the case
No. 4, in Appendix C to calibrate rate and damping parameters, negligible
differences can be observed across obtained results for simulations with
different values of damping. Upon the completion of normal compression, the
normal velocity has decreased to zero at the 1,000,000th timestep, and the

Figure C1. Comparisons of normal contact response (normalized normal
contact force vs. normalized normal contact displacement) for the contact
between an elastic sphere and a rigid planar surface between finite element
method results of different mesh sizes and element types, referenced with the
Hertzian contact solution.
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ratio of kinetic energy to internal energy is only about 10− 7, as shown in Figure C3. This static state for both
spheres was sustained for another 100,000 timesteps to better damp the kinetic energy and elastic waves. The
energy ratio was less than 5 × 10− 8 via this manifestation just before the start of tangential motion. Figure C2a
also indicates that the convergency of the macro Fx − s curve has been achieved for the tangential velocity applied
in this study. We further confirm in Figures C2b and 1c that our numerical results in local partial‐slide have
negligible rate dependence for the maximum speed applied in this study.

C1. Material Properties

Rough spheres are assigned material constitutive models associating isotropic linear elasticity with or without
Mises plasticity. The plasticity is represented as a typical isotropic power‐law strain hardening:

(C6)

where σ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3SijSij/2

√
is the current Mises yield stress, Sij the deviatoric stress tensor, εp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2EpijE

p
ij/3

√
the

equivalent plastic strain, Epij the deviatoric plastic strain tensor, σY the initial yield stress, and ƙ and ƞ hardening
parameters. The isotropic linear elasticity is only featured with two param-
eters: the Young's modulus (E) and Poisson's ratio (v). All the material pa-
rameters used in simulations are summarized in Table C1, where (E, v) =
(47.62 GPa, 0.360) is for sandstone, (E, v) = (94.40 GPa, 0.118) for silica
sand, and (E, v) = (200.00 GPa, 0.250) for steel.

C2. Contact and Friction Model

Contact behavior is simulated by the balanced master‐slave contact pair
(ABAQUS, 2016) formed by two mesh‐based surfaces. We have confirmed
that all contacts occur in the fine‐mesh zone. Compared with the pure master‐
slave contact pair, such a contact pair with the kinematic contact algorithm
and enforcement of contact conditions can decrease illness induced by large
penetrations between contacted surfaces. The contact formulation is catego-
rized into normal and frictional contacts, both of which are based on finite
sliding formulation, enabling any arbitrary motions between two contacted
surfaces. For contacted nodes, we adopt the standard Coulomb friction model
where no relative motion occurs if the equivalent frictional stress,

qe =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

qx2 + qy2,
√

(C7)

Figure C2. Convergence studies of applied normalized maximum velocity (vmax) by R
∆t and linear damping parameter, where

∆t means the length of constant timestep; (b) Comparison of the distributions of pn and qx at s/(μs · CM · h0) = 1 between
different vmax; and (c) Error in local partial‐slide denoted by friction saturation induced by different vmax.

Figure C3. Energy evolution after completion of the pure normal
compression process. Ei and Ek are internal and kinetic energies,
respectively.
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on the contact plane shown in Figure C4a is smaller than the critical frictional stress,

τc = μs · pn, (C8)

as shown in Figure C4b, where pn is the normal contact pressure, and μs the set friction coefficient. Notably, qx is
frictional stress on the projection of the global x axis on the contact plane, while qy is the frictional stress on the
contact plane and perpendicular to the surface crossed by pn and qx. Contacted node friction saturation (ʂ) is also
defined as the ratio of concurrently computed friction coefficient (μç) to given dry Coulomb friction coeffi-
cient (μs),

(C9)

where μç = qe /pn.

Appendix D: Relevant Definitions and Details of Ultra‐High Degree SH
In a spherical coordinate system, surficial points of a star‐shaped grain can be approximated using the SH
function, Ymn (θ, φ), via denoting its radial length,

r(θ, φ) =∑
∞

n=0
∑
n

m=− n
cmn Y

m
n (θ, φ), (D1)

where θ ∈ [0, π] and φ ∈ (0, 2π] are the latitudinal and longitudinal coordinates respectively, and cmn are the SH
coefficients of degree n and order m. n is sometimes called spherical wavenumber. With the help of Parseval's
theorem, the PS, Ln, at each SH frequency can be measured by

Figure C4. (a) Definitions of the local contact directions on or perpendicular to the contact plane; (b) The definition of the dry
Coulomb friction model.

Table C1
Material Properties Used in Finite Element Methods Simulations

No. E (GPa) v σY (MPa) ƙ (MPa) ƞ

① 94.40 0.118

② 47.62 0.360

③ 200.00 0.250

④ 94.40 0.118 478.66 4,681.02 0.3
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Ln =
⃦
⃦ fn

⃦
⃦ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
n

m=− n

⃦
⃦cmn

⃦
⃦2,

√

(D2)

where ||·|| is the L2 norm. Some definitions associated with the mean roughness to quantify how rough grain
surface is different from its mean radial length are necessary. The average radius length, r, equals its c0‐deter-
mined sphere, R0, reads as

r≅R0 = c0 · Y0(θ, φ). (D3)

where Y0(θ, φ) = 1
2
̅̅
π

√ . In this study, we generate unit spheres, thus c0 = 2
̅̅̅
π

√
. Parseval's theorem enables direct

calculation of the mean squared distance (Msd) between two grains only using their cmn without approximate
sampling, such as the geodesic structure from an iterative icosahedron subdivision of spherical (θ,φ) space. In
addition, a correction is needed, since ∫2π

0 ∫π
0 Y

m
n (θ, φ) · [Ymn (θ, φ)]

∗ · sin θ dθdφ = 4π≠1. With cm1, n and cm2, n
denoting SH coefficients of two grains, Msd reads as 1

4π∑
∞
n=0∑

n
m=− n‖c

m
1, n − cm2, n‖

2. If we set cm1, n = cmn
and cm2, n = c00,

Msd =
1
4π
∑

∞
n=1∑

n
m=− n

⃦
⃦cmn

⃦
⃦2
. (D4)

Simultaneously, for quantifying the roughness of half space or closed surface, the concept related to discrete
approximation, mean square roughness (Msr) or its square root (Sq), is more frequently mentioned,

Msr = Sq2 =
1
l
∑
l

l=1
(Rl − R0)2, (D5)

where l is the number of detached surficial points. When l is large enough, we arrive at

Sq2 = Msd =
1
4π
∑

∞
n=1∑

n
m=− n

⃦
⃦cmn

⃦
⃦2
. (D6)

Next, we will introduce how randomness is created in surface generation in ultra‐high SH. If we apply the cut‐off
wavelength at n = 2,001, SH coefficients cn in Equation D1 can be explicitly denoted:

cn =

⎛
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T
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. (D7)

Each term, cmn , in the above equation is a complex number and random numbers are generated by the following
two rules:

c0n = A0
n, (D8)
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cmn = Amn + Bmn · i, c− mn = (− 1)m · (Amn + Bmn · i)
∗, (D9)

where i2 = − 1, [ ]* means the conjugate, and Amn and Bmn are real numbers. After cn is given, it will be used to
generate a specific set of SH coefficients, cn, for the given Rr andDf by multiplying a real number, Pn, at each raw
of cc,

cn=
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Note that c1 = (0 0 0)T because it has no evident effects on the grain shape according to Mollon and
Zhao (2012) and cn is kept the same for grains of various Rr and Df. Further, if n is smaller than the roll‐off
wavelength at nr and higher than 1, all real numbers in cmn is set to zero:

( c− nn ⋯ c0n ⋯ cnn)
T

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
2 × n + 1

= (0 ⋯ 0 ⋯ 0)T

⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟
2 × n + 1

.

Data Availability Statement
Present results and used codes can be found in the Zenodo repository (Zhai, 2023).
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